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Abstract   

The paper is dedicated to the basic architecture of the artificial neural network of a new 
type – the Progressive Artificial Neural Network (PANN) - and its new training algorithm. 
The PANN architecture and its algorithm when applied together provide a significantly 
higher training speed than the known types of artificial neural networks and methods of 
their training. The results of testing the proposed network and its comparison with existing 
networks are given. For those who are interested in independent testing the information is 
provided that allows to download one of the variants of the proposed network. 

 

1. Theoretical basis of fast neural network training   
The artificial neural network (ANN) was mathematically confirmed as a universal 
approximating device in 1969 in [1]. At the same time, one of the major ANN limitations 
was revealed. As is known, each synapse in ANN has one synaptic weight. ANN training is 
performed by calculating and correcting these weights for the training image. For each next 
training image the same weights must be again corrected. Therefore, training is conducted 
through a large number of iterations. With training volume increase training time can grow 
exponentially. 
 
In [2] and [3], a new neural network design is proposed, which differs from existing ANN by 
the fact there is a plurality of corrective weights at each synapse, and the corrective 
weights are selected by a special device (distributor) depending on the value of the input 
signal. 
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Figure 1 shows a well-known artificial formal neuron, which includes a summing device and 
an activation device, and Figure 2 shows a new artificial neuron, called p-neuron, proposed 
in [2] and [3]. 
 
In p-neuron, the signal from the input device is sent to the distributor, which estimates the 
value of the signal, refers it to one of the value intervals, and appropriately assigns a 
corrective weight corresponding to this signal. Figure 2 shows that a signal with a value 
corresponding to the value interval 3 selects the correcting weight d3. 
 
A new neural network has a classical neural architecture with p-neurons used in place of 
formal neurons. Figure 3 shows ANN with classical formal neurons, and Fig. 4 - a p-
network with proposed p-neurons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Training of the p-network 
The P-network training, which that is shown in Fig. 4 differs significantly from the training of 
a classic ANN. Due to the presence of a plurality of corrective weights at each synapse, 
different input signals activate different weights. Input signals of the same value activate 
the same weights. 
 
P-network training includes the following steps: 
 

1. Input signals are sent to the distributors. Distributors activate weights at the 
synapses, depending on the value of the input signals. With other input signals, 
other weights at the synapses are activated. Values of these weights are sent to the 
neurons to which the synapses are connected. 

 
2. Neurons form their output signals as a sum of corrective weights received by a given 

neuron  
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∑n=  𝑊𝑖 ,𝑑 ,𝑛𝑖 ,𝑑 ,𝑛  

 
Where: 

∑n- Neuron input signal;  
 i - Corrective weight input index, which determines the signal input; 
d - Corrective weight interval index, which determines the value interval for 
the given signal; 
n - Corrective weight neuron index, which determines the neuron that 
received the signal; 
W i,d,n - Corrective weight value;  

 
3. Comparison of the received neuron output signals with the predefined desirable 

output signals and generation of correction signals for the group correction of 
corrective weights. 

 
Where, the group correction is a modification of the activated corrective 
weights associated with a given neuron, with each weight changing to the 
same value or multiplying by the same coefficient. 
 

Below are two exemplary and non-limiting variants of the formation and use of the 
group correction signals: 
 

Variant #1 - Formation and application of correction signals based on the 
difference between desirable output signals and obtained output sums, as 
follows: 

Calculation of the equal correction value ∆n for all corrective weights 
contributing into the neuron n according to the equation: 

∆n = (On - ∑n) / S 

 
Where:  
On - Desirable output signal corresponding to the neuron output sum 
∑n; 
S - Number of synapses connected to the neuron n. 

 
Variant #2 - Formation and application of corrective signals based on a ratio 
of desirable output signals versus obtained output sums as follows: 

Calculation of the equal correction value ∆n for all corrective weights 
contributing into the neuron n according to the equation: 

 

∆n = On / ∑n 

 
4. Correction of all weights connected to the given neuron. According to the first variant, 

Δn is added to the current weight value. In the second variant, the current weight 
value is multiplied by Δn. This nullifies the training error for the current image for a 
given neuron. In other words, instead of the gradient descent used in classical 
neural networks, which requires a large number of iterations, p-network provides a 
radical correction of the weights in one step. 
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5. Repeat steps 2 through 5 for all images. This completes the first training epoch. The 

corrected weights obtained during the network training with the first images of the 
epoch can be corrected by its training with the next images, and thus, training with 
previous images during one epoch may deteriorate. If the desirable accuracy is not 
achieved after the first training epoch, several more epochs can be carried out. 

 
The simple method for calculating weight corrections that does not require iterative 
processes, provides a very fast completion of the training epochs. And the one-step 
correction of all active weights for the entire amount of the training error drastically reduces 
the number of epochs necessary for training. 

3. Software implementation of a fast training neural network  
The described p-network has been implemented in the software form using the Object 
Oriented Language. Fig. 5 represents the software implementation of the p-network in the 
Unified Modeling Language (UML). 
 
  



5 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The UML model in Fig. 5 shows the generated software objects, their relationships, as well 
as functions and parameters of these objects. In more detail, these steps are shown in 
Figures 6 – 12, including: 

 Fig. 6 - general sequence of p-network formation;  

 Fig. 7 - analysis process, which allows to prepare data necessary for p-network 
formation; 

 Fig. 8 - input signal processing, which makes it possible for the p-network to interact 
with the input data during its training and operation;  

 Fig. 9 - formation of neuron units, including a neuron and a synapse with corrective 
weights, which provides p-network training and operation;  

 Fig.10 - creation of synapses with corrective weights. 
  

 

Synapse

+Input: InputSignal
-CorrectiveWeights: Array(d) of float

+initializeWeights()
+getOutput(): float
+addCorrection(value: float)

PNet

+NeuronUnit: Array of Neuron
-NeuronsNumber: Integer          /* n */
-InputsNumber: Integer              /* i */
+Inputs: Array of InputSignal 

+setNeuronsNumber (Number: Integer)
+getNeuronsNumber (): Integer
+setInputsNumber (Number: Integer)
+getInputsNumber (): Integer
+setInput(input: Integer; value: float)
+getInput(output: Integer): float
+setDesiredOutput(output: Integer; value: float)
+getDesiredOutput(output: Integer): float
+getOutput(output: Integer): float
+train()
+recognize()

NeuronUnit

+Synapses: Array of Synapse

+getSum():float
+setDesiredSum(value: float)
+getDesiredSum(): float
+train()

InputSignal

+Synapses: Array of Synapse
-Input: float
-MinSignal: float
-MaxSignal: float
-Intervals: Integers    /* d */
-Interval: float

+addSynapse(value: Synapse)
+deleteSynapse(SynapseID: Integer)
+setMinSignal(value: float)
+getMinSignal(): float
+setMaxSignal(value: float)
+getMaxSignal(): float
+setInput(value: float)
+getInput(): float
+getCorrectiveCoefficient (level: Integer): float
+getIntervalsNumber(): Integer
+setIntervalsNumber(value: Integer)

UML model for object-oriented programming  of p-net
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Within the process the following classes of objects are formed: 

 PNet;  

 InputSignal;  

 NeuronUnit;   

 Synapse.  
 

The formed class of objects NeuronUnit includes: 
 Array of objects of the Synapse class;  
 Neuron - a variable, in which adding is provided during training process;  
 Calculator - a variable, in which the value of the expected sum is placed and where 

the calculations of the training corrections are being made.   
 

The class NeuronUnit provides network training, including:  
 Formation of neuron sums; 
 Assignment of values of expected sums; 
 Calculation of corrections; 
 Introduction of corrections into corrective weights.  

 
The formed class of objects Synapse includes: 

 Array of corrective weights; 
 Pointer directed to the synapse-related input. 
 
The class Synapse provides the following functions:  
 Initiation of corrective weights; 
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 Factors by weights  multiplication;  
 Weight correction. 

 
The formed class of objects InputSignal includes: 

 Array of pointers to the synapses connected with a given input;  
 Variable where the value of input signal is placed; 
 Values of potential minimum and maximum input signal;  
 Number of intervals; 
 Width of an interval. 

 
The class InputSignal provides the following functions:  

 Formation of the network structure, including: 
o Adding and removing links between an input and synapses; 
o Assignment of the number of intervals for the synapses of the given input.  

 Assignment of values of parameters for the minimum and maximum input signal;  

 Contribution into the network operation: 
o Setting  the input signal; 
o Setting correction factors.  

 
The formed class of objects PNet includes the array of object classes: 

 NeuronUnit; 
 InputSignal.  

 
The class PNet provides the following functions: 

 Specifies the number of objects in the class InputSignal;  
 Specifies the number of objects in the class NeuronUnit; 
 Provides group request of functions of the objects NeuronUnit and InputSignal. 

 
In the training process, operation cycles are formed in which: 

 The output of the neuron is formed, which is equal to zero prior to the start of the 
cycle. All the synapses contributing to the given NeuronUnit are reviewed, wherein 
for each synapse: 

o Distributor forms an array of correction factors based on the input signal. 
o All the weights coming to this synapse are reviewed, wherein for each weight 

the following operations are executed: 
 Multiplication of the weight value by the corresponding coefficient Сi,d,n; 
 The result of multiplication is added to the output sum of the neuron.  

 Correction value ∆n is calculated; 

 The result of multiplication of the correction value ∆n by the coefficient Сi,d,n  is 

calculated (∆n × Сi,d,n); 

 All the synapses contributing to the given NeuronUnit are reviewed, wherein for 
each synapse: 

o All the weights coming to the synapse are reviewed, and each weight value is 
changed by the corresponding correction value.  

 
Respectively: 

 Fig. 11 - training process of a single neural unit in detail.  

 Fig. 12 - general process of p-network training. 
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4. Test results 
The experimental PANN built according to the above algorithm was implemented in 
Python.  
 
The comparison was provided between Deep Learning ANN (DNN) based on advanced 
Google Tensor Flow technology and PANN.  The results of comparison based on the 
standard statistical IRIS Test showed the following: 
   

a. Training Error: PANN performance is comparable to the best results of the tested 
DNN; 

b. Training Speed: PANN speed is at least 3,000 times higher than DNN.  
 
The results of the tests are shown in the screenshot below.  
 

 
Fig 11
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As can be seen, with the same accuracy, PANN training speed is 1 ms vs 22141 ms for 
DNN.  
 
The results are obtained on the computer with the following parameters:  

 Windows 7 Home Premium 

 Processor: Intel® Core™ i5 -337U CPU @ 1.80GHz 

 System type: 64-bit Operating System  
 
It is apparent that on a different computer and with different processor download training 
time will be different. 
 
Those who are interested in independent testing or in the non-commercial use of the new 
network can download one of its variants and user instructions here.  
 

Discussion and conclusions 
The tests have confirmed the theoretical expectations of a radical acceleration of network 
training by eliminating the need for iterative calculations. They also revealed additional 
benefits: 

 Drastic decrease in the number of network training epochs necessary for the 
predefined accuracy of results. In some cases, the entire training was completed in 
2-3 epochs, in some cases, - in dozens of epochs. This provided additional 
reduction in training time. 

 P-network has no need in activation function that is required in classical neural 
networks. Removing this function has further increased the training speed. 

 PANN and the proposed training method can significantly accelerate the operation 
of various specialized neural networks, such as, Hopfield and Kohonen networks, 
Boltzmann machine and adaptive networks. The network and its training method 
can be used in recognition, clustering and classification, prediction, associative 
information search, and the like, with additional partial network training in real time. 

 

http://progress.ai/downloads/
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In addition, PANN application makes it possible to: 

 Increase the computing power of computers, through the use of PANN-based 
computing blocks and cache memory systems. 

 Save computing resources and reduce energy consumption. 

 Create Large Databases with high performance, speed and reliability.  
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