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(57) ABSTRACT

A neural network includes inputs for receiving input signals,
synapses connected to the inputs and having corrective
weights, and neurons having outputs connected with the
inputs via the synapses. Each neuron generates a neuron sum
by summing corrective weights selected from the respective
synapse. A controller receives a desired output signal, deter-
mines a deviation of the neuron sum from the desired output
signal value, and modifies respective corrective weights
using the determined deviation. Adding up the modified
corrective weights to determine the neuron sum minimizes
the deviation and trains the network. A structure-forming
module rearranges connections between network elements
during the training and a signal allocation module distributes
the input signals among the network elements during the
training. A training module commands and coordinates
operation of the structure-forming and the signal allocation
modules and the controller to reorganize the network struc-
ture during the training to control the training in real time in
real-time.
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1
NEURAL NETWORK AND METHOD OF
NEURAL NETWORK TRAINING

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation-in-part of U.S. Utility
application Ser. No. 15/449,614 filed Mar. 3, 2017, which is
a continuation-in-part of U.S. Utility Bypass application Ser.
No. 15/178,137 filed Jun. 9, 2016, which is a continuation-
in-part of U.S. Utility Bypass application Ser. No. 14/862,
337 filed Sep. 23, 2015, and is a continuation of Interna-
tional Application Serial No. PCT/US 2015/19236 filed Mar.
6, 2015, which claims the benefit of U.S. Provisional Appli-
cation Ser. No. 61/949,210 filed Mar. 6, 2014, and U.S.
Provisional Application Ser. No. 62/106,389 filed Jan. 22,
2015, and also claims the benefit of U.S. Provisional Appli-
cation Ser. No. 62/173,163 filed Jun. 9, 2015, the entire
content of which is similarly incorporated by reference.

INTRODUCTION

The disclosure relates to an artificial neural network and
a method of training the same.

In machine learning, the term “neural network™ generally
refers to software and/or computer architecture, i.e., the
overall design or structure of a computer system or a
microprocessor, including the hardware and software
required to run it. Artificial neural networks may be a family
of statistical learning algorithms inspired by biological neu-
ral networks, a.k.a., the central nervous systems of animals,
in particular the brain. Artificial neural networks are primar-
ily used to estimate or approximate generally unknown
functions that may depend on a large number of inputs. Such
neural networks have been used for a wide variety of tasks
that are difficult to resolve using ordinary rule-based pro-
gramming, including computer vision and speech recogni-
tion.

Artificial neural networks are generally presented as sys-
tems of “neurons” which may compute values from inputs,
and, as a result of their adaptive nature, are capable of
machine learning, as well as pattern recognition. Each
neuron frequently connects with several inputs through
synapses having synaptic weights.

Neural networks are not programmed as typical software
and hardware, but are trained. Such training is typically
accomplished via analysis of a sufficient number of repre-
sentative examples and by statistical or algorithmic selection
of synaptic weights, so that a given set of input images
corresponds to a given set of output images. A common
criticism of classical neural networks is that significant time
and other resources are frequently required for their training.

Various artificial neural networks are described in the
following U.S. Pat. Nos. 4,979,124; 5,479,575; 5,493,688;
5,566,273, 5,682,503; 5,870,729; 7,577,631; and 7,814,038.

SUMMARY

An operative structure of a neural network includes a
plurality of inputs of the neural network, each input config-
ured to receive an input signal having an input value. The
neural network operative structure also includes a plurality
of synapses. Fach synapse is connected to one of the
plurality of inputs and includes a plurality of corrective
weights. Each corrective weight is defined by a weight
value, and each synapse communicates weight signals
indicative of weight values of the corrective weights. The
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2

neural network operative structure also includes a set of
neurons. Each neuron has at least one output and is con-
nected with at least one of the plurality of inputs via at least
one of the plurality of synapses. Each neuron is also con-
figured to receive the weight signals from the at least one of
the plurality of synapses and add up the weight values of the
corrective weights selected from each synapse connected to
the respective neuron and thereby generate a neuron sum.

The neural network operative structure additionally
includes a controller configured to receive a desired output
signal having a value, determine a deviation of the neuron
sum from the desired output signal value. The controller is
additionally configured to modify respective corrective
weight values using the determined deviation, such that
adding up the modified corrective weight values to deter-
mine the neuron sum minimizes the deviation of the neuron
sum from the desired output signal value to thereby train the
neural network. The neural network operative structure also
includes a structure-forming module configured to selec-
tively arrange and rearrange connections between neural
network elements during the training of the neural network.
The subject neural network elements include the plurality of
inputs, the set of neurons, and the plurality of synapses. The
neural network operative structure additionally includes a
signal allocation module configured to distribute the input
signals among the neural network elements during the
training of the neural network. The neural network operative
structure further includes a training module configured to
command and coordinate operation of the controller, the
structure-forming module, and the signal allocation module
to reorganize the operative structure of the neural network
during the training of the neural network to thereby control,
in real-time, the training of the neural network.

The signal allocation module may be further configured to
select one or more corrective weights from the plurality of
corrective weights in correlation with the input value.

The neural network operative structure may additionally
include a set of distributors. Each distributor may be opera-
tively connected to one of the plurality of inputs for receiv-
ing the respective input signal and be configured to select
one or more corrective weights from the plurality of cor-
rective weights in correlation with the input value.

The structure-forming module may be additionally con-
figured to vary a number of the inputs, a number of the
neurons, and a number of the synapses during the training of
the neural network.

The structure-forming module may be additionally con-
figured, during the training of the neural network, to reset a
degree of connectivity between the inputs and the neurons,
a number of the outputs, a number of the corrective weights
on each respective synapse, and the weight values of the
corrective weights.

The training module may be additionally configured to
access a testing input signal having a value and access a
desired testing output signal. The training module may be
further configured to determine a difference between the
testing input signal and the desired testing output signal
value during the training to thereby evaluate effectiveness of
ongoing training of the neural network.

The received input signals may include the testing input
signal.

The training module may additionally be configured to
select an input signal from the received input signals and
alter the selected input signal. The training module may be
further configured to communicate the altered selected input
signal to the controller to compare the altered selected input
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signal with the desired testing output signal and thereby
evaluate the effectiveness of the ongoing training

A method of training a neural network having an opera-
tive structure is also disclosed. The method includes receiv-
ing training images via a plurality of inputs to the neural
network, wherein the training images are either received as
a training input value array or codified as the training input
value array during training of the neural network. The
method also includes organizing corrective weights of a
plurality of synapses in a corrective weight array. According
to the method, each synapse is connected to one of the
plurality of inputs and includes a plurality of corrective
weights, and each corrective weight is defined by a weight
value. The method additionally includes generating a neuron
sum array via a plurality of neurons. According to the
method, each neuron has at least one output and is connected
with at least one of the plurality of inputs via at least one of
the plurality of synapses, and each neuron is configured to
add up the weight values of the corrective weights corre-
sponding to each synapse connected to the respective neu-
ron.

The method additionally includes receiving, via a con-
troller, desired images organized as a desired output value
array and determining a deviation of the neuron sum array
from the desired output value array and generate a deviation
array. The method also includes modifying, via the control-
ler, the corrective weight array using the determined devia-
tion array. Such adding up the modified corrective weight
values to determine the neuron sum array reduces the
deviation of the neuron sum array from the desired output
value array to generate a trained corrective weight array and
thereby facilitate concurrent training of the neural network.

The method additionally includes selectively arranging
and rearranging connections between neural network ele-
ments including the plurality of inputs, the plurality of
synapses, and the plurality of neurons during the training of
the neural network via a structure-forming module. The
method also includes distributing the training images among
the neural network elements via a signal allocation module
during the training of the neural network. The method
further includes commanding and coordinating operation of
the controller, the structure-forming module, and the signal
allocation module to reorganize the operative structure of
the neural network during the training of the neural network
via a training module, to thereby control, in real-time, the
training of the neural network.

The above features and advantages, and other features and
advantages of the present disclosure, will be readily apparent
from the following detailed description of the
embodiment(s) and best mode(s) for carrying out the
described disclosure when taken in connection with the
accompanying drawings and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a “progressive neural network™
(p-net) having a plurality of synapses and a plurality of
corrective weights associated with each synapse, according
to the disclosure.

FIG. 2 is an illustration of the p-net in the process of being
trained, according to the disclosure.

FIG. 3 is an illustration of the p-net in the process of
image recognition, according to the disclosure.

FIG. 4 an illustration of the p-net having a set of modules
configured to modify operative structure of the p-net during
ongoing p-net training, according to the disclosure.
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FIG. 5 is a flow diagram of a method for operating the
neural network shown in FIGS. 1-4.

DETAILED DESCRIPTION

Referring to the drawings, wherein like reference num-
bers refer to like components, FIG. 1 shows a general
schematic view of a progressive artificial neural network
100, thereafter “the network”, or “p-net” 100. The p-net 100
may be implemented as software programmed into an appa-
ratus, such as a computer or a system of computers, or be
configured as a combination of software and hardware
incorporated into a non-transitory computer-readable stor-
age device, or a hardware device such as a microchip.

The p-net 100 includes a plurality of inputs 102, and is a
means for executing the actions described in detail below.
Each input 102 is configured to receive an input signal 104,
wherein the input signals are represented as I, I, . .. I, in
FIGS. 1-3. Each input signal I,, I, . . . I, represents a value
of'some characteristic(s) of an input image 106, for example,
a magnitude, frequency, phase, signal polarization angle, or
association with different parts of the input image 106. The
term “image” as employed herein is intended to denote any
type of information or data received for processing or
generated by the neural network. Each input signal 104 has
an input value, wherein together the plurality of input signals
104 generally describes the input image 106. A trained p-net
is designated via numeral 100A. When the p-net 100 is being
trained, the input image 106 is defined as a training image,
while in the trained p-net 100A the input image 106 is
intended to undergo recognition.

Each input value may be within a value range that lies
between —c and +c0 and may be set in digital and/or analog
forms. The range of the input values may depend on a set of
training images. In the simplest case, the range input values
could be the difference between the smallest and largest
values of input signals for all training images. For practical
reasons, the range of the input values may be limited by
eliminating input values that are deemed too high. For
example, such limiting of the range of the input values may
be accomplished via known statistical methods for variance
reduction, such as importance sampling. Another example of
limiting the range of the input values may be designation of
all signals that are lower than a predetermined minimum
level to a specific minimum value and designation of all
signals exceeding a predetermined maximum level to a
specific maximum value. The training images 106 are either
received by the plurality of inputs 102 as a training input
value array 107 or codified as a training input value array
107 during training of the p-net 100, i.e., after having been
received by the plurality of inputs.

The p-net 100 also includes a plurality or a set of synapses
118. Each synapse 118 is connected to one of the plurality
of inputs 102, includes a plurality of corrective weights 112,
and may also include a synaptic weight 108, as shown in
FIGS. 1-3. Each corrective weight 112 is defined by a
respective weight value. Additionally, the corrective weights
112 of all the synapses 118 are organized as, i.e., in the form
of, a corrective weight array 119. Accordingly, in FIG. 1, the
corrective weight array 119 includes all the corrective
weights 112 within the dashed box 119. The p-net 100 may
also include a set of distributors 114. In such an embodi-
ment, each distributor 114 is operatively connected to one of
the plurality of inputs 102 for receiving the respective input
signal 104. Each synapse 118 is configured to communicate
weight signals 113 indicative of the weight values of the
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respective corrective weights 112, and may communicate a
signal indicative of the respective synaptic weight 108.

The p-net 100 additionally includes a set of neurons 116,
and is a means for executing the actions described in detail
below. Each neuron 116 has at least one output 117 and is
connected with at least one of the plurality of inputs 102 via
at least one synapse 118. Each neuron 116 is configured to
receive the weight signals 113 indicative of the weight
values of the respective corrective weights 112 from the at
least one of the plurality of synapses 118. Each neuron 116
is additionally configured to add up or sum the corrective
weight values of the corrective weights 112 selected from
each synapse 118 connected to the respective neuron 116
and thereby generate and output a neuron sum array 120,
otherwise designated as In. A separate distributor 114 may
be used for each synapse 118 of a given input 102, as shown
in FIGS. 1-3. Alternatively, a single distributor may be used
for all such synapses (not shown). During formation or setup
of the p-net 100, all corrective weights 112 are assigned
initial values, which may change during the process of p-net
training, shown in FIG. 2. The initial value of the corrective
weight 112 may be selected randomly, calculated with the
help of a pre-determined mathematical function, selected
from a predetermined template, etc. Initial values of the
corrective weights 112 may be either identical or distinct for
each corrective weight 112, and may also be zero.

As shown in FIG. 2, the p-net 100 also includes a
controller 122 configured to regulate training of the p-net
100, and as such is a means for executing the actions
described in detail below. In order to appropriately perform
the tasks described in detail below, the controller 122
includes a memory, at least some of which is tangible and
non-transitory. The memory of the controller 122 may be a
recordable medium that participates in providing computer-
readable data or process instructions. Such a medium may
take many forms, including but not limited to non-volatile
media and volatile media. Non-volatile media for the con-
troller 122 may include, for example, optical or magnetic
disks and other persistent memory. Volatile media may
include, for example, dynamic random access memory
(DRAM), which may constitute a main memory. Such
instructions may be transmitted by one or more transmission
medium, including coaxial cables, copper wire and fiber
optics, including the wires that comprise a system bus
coupled to a processor of a computer.

Memory of the controller 122 may also include an appro-
priate medium, for example a magnetic or an optical
medium. The controller 122 may be configured or equipped
with other required computer hardware, such as a high-speed
clock, requisite Analog-to-Digital (A/D) and/or Digital-to-
Analog (D/A) circuitry, necessary input/output circuitry and
devices (I/O), as well as appropriate signal conditioning
and/or buffer circuitry. Algorithms required by the controller
122 or accessible thereby may be stored in the memory and
automatically executed to provide the required functionality
described in detail below.

The controller 122 may be programmed to organize the
corrective weights 112 into the corrective weight array 119.
The controller 122 is also configured to receive desired
images 124 organized as a desired output value array 126,
determine a deviation 128 of the neuron sum array 120 from
the desired output value array, and generate a deviation array
132. The controller 122 is further configured to modify the
corrective weight array 119 using the determined deviation
array 132. In such a case, adding up the modified corrective
weight values to determine the neuron sum array 120
reduces, i.e., minimizes, the deviation 128 of the neuron sum
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6

array 120 from the desired output value array 126 to
generate a trained corrective weight array 134. As shown in
FIGS. 2-3, and analogous to the corrective weight array 119
shown in FIG. 1, the trained corrective weight array 134
includes all the corrective weights 112 within the dashed box
134. As shown in FIGS. 2-3, and analogous to FIG. 1, the
corrective weight array 119 includes all the corrective
weights 112 within the dashed box 119 and may include the
distributors 114 associated therewith. Therefore, the mini-
mized deviation 128 of the neuron sum array 120 compen-
sates for errors generated by the p-net 100. Furthermore, the
generated trained corrective weight array 134 facilitates
concurrent or parallel training of the p-net 100.

In a trained p-net 100A, shown in FIG. 3, the plurality of
inputs 102 to the p-net may be configured to receive input
images 106. Such input images 106 may be either received
as an input value array 107A or codified as an input value
array 107A during recognition of the images by the p-net
100. Each synapse 118 may include a plurality of trained
corrective weights 112A. Additionally, each neuron 116 may
be configured to add up the weight values of the trained
corrective weights 112A corresponding to each synapse 118
connected to the respective neuron, such that the plurality of
neurons generate a recognized images array 136, thereby
providing recognition of the input images 106. In the
embodiment of the p-net 100 and the trained p-net 100A that
includes the set of distributors 114, the distributors may be
configured to codify the training and input images 106 as the
respective training input value array 107 and input value
array 107A. Accordingly, such a set of distributors 114 being
operatively connected to the plurality of inputs 102 for
receiving each of the respective training and input images
106. The above operations may be performed using struc-
tured matrices, specifically a trained corrective weight
matrix in place of the trained corrective weight array 134, as
will be described in detail below.

The controller 122 may additionally be programmed with
an array of target deviation or target deviation array 138 of
the neuron sum array 120 from the desired output value
array 126. Furthermore, the controller 122 may be config-
ured to complete training of the p-net 100 when the devia-
tion 128 of the neuron sum array 120 from the desired output
value array 126 is within an acceptable range 139 of the
target deviation array 138. The acceptable range 139 may be
referenced against a maximum or a minimum value in, or an
average value of the target deviation array 138. Alterna-
tively, the controller 122 may be configured to complete
training of the p-net 100 when the speed of reduction of the
deviation 128 or convergence of the training input value
array 107 and the desired output value array 126 falls to a
predetermined speed value 140. The acceptable range 139
and/or the predetermined speed value 140 may be pro-
grammed into the controller 122.

The training input value array 107, input value array
107A, the corrective weight array 119, neuron sum array
120, desired output value array 126, deviation array 132,
trained corrective weight array 134, recognized images array
136, and target deviation array 138, i.e., parameter values
therein, may be organized, respectively, as a training input
value matrix 141, input value matrix 141A, corrective
weight matrix 142, neuron sum matrix 143, desired output
value matrix 144, deviation matrix 145, trained corrective
weight matrix 146, recognized images matrix 147, and target
deviation matrix 148. Wherein in each respective array 107,
107A, 119, 120, 126, 132, 134, 136, and 138, values of the
respective parameters may be organized, for example, in the
form of a processor accessible data table, the values in the
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respective matrices 141, 141A, 142, 143, 144,145,146, 147,
and 148 are specifically organized to enable application of
algebraic matrix operations to each respective matrix indi-
vidually, as well as to combinations thereof. The matrices
141, 141A, 142, 143, 144, 145, 146, 147, and 148 are not
specifically shown in the figures, but, when organized as
such, are to be understood as taking place of the respective
arrays 107, 107A, 119, 120, 126, 132, 134, 136, and 138.

In the examples below, for illustration purposes, particular
matrices are depicted with arbitrary number of columns and
rows. For example, the training images may be received
and/or organized in an input training matrix

Input 1 Input 2 Input 3
Image 1 I, L, I3,
Image 2 I, Ls I3,
Image 3 I3 s I3

Subsequently, the above training input images matrix may
be converted via the controller 122 into the training input
value matrix 141, which is represented as matrix |Cl. Each
matrix |C| will have a corresponding number of columns for
the number of inputs “I”, but accounting for a specific
number of intervals “i”, and a corresponding number of rows
for the number of images.

20

25

8
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231 = G311 X Wai1 + Ca21 X Wanp + Cs31 X Wiy
le
222

= Criy X Wiip + Ciap X Wipy + Cizp X Wiy

= G X Warp + Coap X Wozp + Cozp X Wosy...

=Ciz X Wiz + Ciaz X Wiz + Cra2 X Wiz ..

= Cara X Wapn + Copp X Wapp + Cozp X Wasa...

The desired output value matrix 144 may be formed as
matrix 10I, as shown below:

Output 1 Output 2 Output 3

Image 1
Image 2
Image 3

Oll
021
031

012
022
032

013

033

Input 1

il i2 i3 i4 il i2 i3 i4 il

Image 1 Cy;; Cpyp Cisp Cur G Cozr Coar Coyyr Caypy
Image2 Cjp Cimp Cizp Cin Gop Gom Conp Copp Gapp
Image3 Cy3 Cps Ciaz Cuz Coz Coz Cozz Couz Capz

C321
C322
C323

C341
C342
C343

C331
C332
C333

173333
1

In matrix ICl, intervals identified with a specific correc-
tive weight 112 that will be used during training. In columns
corresponding to intervals “i”, the values of signals may be
replaced with ones (1) to signify that the particular signal
will be used in the particular interval, while in other intervals
for the subject signal, the values of signals may be replaced
with zeros (0) to signify that the particular interval will not
be considered.

An exemplary corrective weight matrix 146 may be formed
as matrix |W| shown below:

Intervals Output 1 Output 2 Output 3
Input 1 il Wi Wi Wiz
i2 Wioy Wiz Wios
i3 Wisy Wi Wiss
i4 Wi Wia Wias
Input 2 il Wai Wi Wais
i2 Wy Waz Waas
i3 Wasy Wz Waas
i4 Wi Wau Waasz
Input 3 il Wi Wi Wiz
i2 Wiy Wiz Wiz
i3 Wiz Wiz Wias
i4 Wiy Wi Wiz

The neuron sum matrix 143 may be represented as matrix |X|
shown below:
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The deviation 128 of the neuron sum matrix 143 may be
determined from the desired output value matrix 144 to
generate the deviation matrix 148 represented as matrix |E|
below:

Dy 33
EI=l01-1)]1= 21 >'22 3’23
D131 313 333

Wherein,

2,,=0,-2,

25,=0,,-2

2,,=0,,-2,, etc.
The corrective weight matrix 142, represented as matrix |W]|
below, may be modified using the determined deviation
matrix 145, which permits adding up the modified corrective
weight 112 values to determine the neuron sum matrix 143
to minimize the deviation of the neuron sum matrix 143
from the desired output value matrix 144 to generate a
trained corrective weight matrix 146, represented as matrix
IW ,pimeal. The matrix |W,,,,,., is derived according to
expression |W,, ... |1=IW|+IVW| (wherein the factor IVW|

will be described in detail below):
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Intervals Output 1 Output 2 Output 3
Input 1 il Wi+ VWi, Wi+ VWi Wiz+ VW 3
i2 Wing + VWiop Wi+ VWi Wi+ VW53
i3 Wis+VWis Wi+ VW5 Wi+ VW53
i4 Wi+ VWi Wi+ VWi Wi+ VW5
Input 2 il Woii + VWoi Wop + VW55 Wiz + VW55
i2 Woay + VWoa Wop + VWayy Wopz + VW3
i3 Wozy + VWo3 Wozp + VWo3 Woss + VW33
i4 Woar + VWoy Wogo + VWoyp Wogs + VW55
Input 3 il Wi+ VW3 Wi+ VW3 Wiz + VW55
i2 Wiy + VWap Wap + VWagy Wipz + VW33
i3 Wiz + VWaz Wag + VWi Wass + VWi35
i4 Waay + VWi Wago + VWi Wigz + VWays

As discussed above, the formation of the trained corrective
weight array 134 and the trained corrective weight matrix
146 facilitates concurrent training of the p-net 100.

In the embodiment of image recognition (shown in FIG.
3) using the trained p-net 100A, concurrent recognition of a
batch of input images 106 may be provided using matrix
operation described above. Specifically, the trained p-net
100A the corrective weights array, which may be repre-
sented as a two-dimensional nxk matrix |W|, where “n” is
the number of neurons 116 and “k” is the number of
corrective weights 112 in a particular neuron. The matrix
IW| may be generally represented as follows:

Wi Wio Wi Wi
Wi W Was W
WBI W32 W33 WSk
War Wiz W3 Wi
Wi Wz W3 Wk

For concurrent recognition of a batch of input images 106,
the input images to be recognized may be presented as a vxk
matrix |Irl, where “v” is the number of recognizable images,
“k” is the number of corrective weights 112 in a particular
neuron 116. The matrix IIrl of input images 106 for recog-
nition may be generally represented as follows:

Iry, Iy, Iry, Ir,,
Irpp Iry Iy Iryp
I3 Irp3 Irss Ir,s
Iryy Irpy Iray Tr,y
Iry Iroy Iry I

In the above matrix |Irl, each row of the matrix is a single
image subjected to recognition.

Concurrent recognition of a batch of input images 106
may be provided by multiplication of the matrix IWI by a
transposed matrix 1117, to generate the recognized image
matrix 147, represented by a symbol “IY|”, and represented
as follows:

|Y1=IWIxIIr "
The matrix Y| has dimensions nxv. Each column of the
matrix Y| is a single output or recognized image obtained

by the trained p-net 100A. The matrix Y| may be generally
depicted as follows:

X71 1 Y12 Y13 Ylv
Y21 YZZ Y23 YZv
Y31 Y32 Y33 Y3v
Y41 Y42 Y43 Y4v
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-continued

Yo Y Yos e Yoo

Each of the p-net 100 and 100A may additionally include
a data processor 150, which may be a sub-unit of the
controller 122. In such embodiments, the controller 122 may
be additionally configured to partition or cut-up at least one
of the respective training input value matrix 141, input value
matrix 141A, corrective weight matrix 142, neuron sum
matrix 143, and desired output value matrix 144 into respec-
tive sub-matrices. The controller 122 may also be configured
to communicate a plurality of the resultant sub-matrix or
sub-matrices to the data processor 150 for separate math-
ematical operations therewith. Such partitioning of any of
the subject matrices 141, 142, 143, and 144 into respective
sub-matrices facilitates concurrent or parallel data process-
ing and an increase in speed of either image recognition of
the input value matrix 141A or training of the p-net 100.
Such concurrent or parallel data processing also permits
scalability of the p-net 100 or 100A, i.e., provides ability to
vary the size of the p-net by limiting the size of the
respective matrices being subjected to algebraic manipula-
tions on a particular processor and/or breaking up the
matrices between multiple processors, such as the illustrated
processor 150. As shown in FIGS. 1-3, in such an embodi-
ment of the p-net 100 and 100A, multiple data processors
150 in communication with the controller 122 may be
employed, whether as part of the controller 122 or arranged
distally therefrom, and configured to operate separately and
in parallel.

The controller 122 may modify the corrective weight
matrix 142 by applying an algebraic matrix operation to the
training input value matrix 141A and the corrective weight
matrix to thereby train the p-net 100. Such a mathematical
matrix operation may include a determination of a math-
ematical product of the input value matrix 141A and the
corrective weight matrix 146 to thereby form a current
training epoch weight matrix 151. The controller 122 may
also be configured to subtract the neuron sum matrix 143
from the desired output value matrix 144 to generate a
matrix of deviation of neuron sums 153 depicted as matrix
IEI described above. Additionally, the controller 122 may be
configured to divide the matrix of deviation of neuron sums
153 by the number of synapses 118, identified below with a
letter “m”, connected to the respective neuron 116 to gen-
erate a matrix of deviation per neuron input 155, represented
below by the symbol “IAWI”, as follows:

IAW=|E|/m

The controller 122 may be additionally configured to
determine a number of times each corrective weight 112 was
used during one training epoch of the p-net 100 represented
in the expression below by the symbol “ISI”. As shown
below, the matrix IS| is obtained via multiplication of the
training input value matrix 141A by a unit vector:

cil c12 c13 1
ISl= C21 €22 €23 x 1
31 032 331

The controller 122 may be further configured to form an
averaged deviation matrix 157, represented below by the
symbol “IVWI”, for the one training epoch using the deter-
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mined number of times each corrective weight was used
during the one training epoch.

IVIVI=IAW/IS]

Furthermore, the controller 122 may be configured to add
the averaged deviation matrix 157 for the one training epoch
to the corrective weight matrix 142 to thereby generate the
trained corrective weight matrix 146, represented below as

IW,, .imeals and complete the one training epoch as shown

below:
W pgineal =1 W1+IV W1
Intervals Output 1 Output 2 Output 3

Input 1 il Wi+ VW, Wi+ VWi, W3+ VW3

%2 Wia + VWiop Wi+ VWi Wi+ VW53

}3 Wiz + VWia Wi+ VW 3 Wigs + VW5,

{4 Wi+ VWi Wi+ VWi Wi+ VW5

Input 2 }1 Woii+ VWoi Wop + VW55 Wiz + VW55

}2 Woay + VWoa Wopp + VWagy Wopz + VW3

}3 Wozy + VWi Wozp + VW3, Wozs + VW3,

{4 Woay + VWouy Wopo + VWosy Wogs + VW3

Input 3 }1 Wi+ VW3 Wi+ VW3 Wiz + VW55

}2 Wiy + VWay Wap + VWapy Wips + VW33

{3 Wiz + VWiz Wiz + VWi3r Wiz + VW335

i4 Waar + VWay Wap + VWi Wiz + VW33

In general, a neural network model is required to learn
from known examples and generalize from those known
examples to new examples in the future. At times, while
handling complex training tasks, neural networks may face
issues that inhibit the training process and depress precision
of training results. One such issue is “linear separability”. In
Euclidean geometry, linear separability is a property of a
number of distinct sets of points. Conceptually, these distinct
sets are linearly separable if there exists at least one line in
a reference plane with all of the points of one set on one side
of the line and all the points of the other set on the other side.
In machine learning, determination of whether such distinct
sets, which may be descriptive of different image charac-
teristics, are linearly separable, and finding a separating
hyperplane if they are, is based on this concept. For effective
training of a neural network, resolving linear separability
frequently requires sorting and classifying of training data
prior to commencement of the training, frequently requiring
sophisticated algorithms to address the issue.

Another issue that may hamper the training of a neural
network is the “exclusive or” or exclusive disjunction,
otherwise known as the “XOR” problem. XOR gains the
name “exclusive or” because the meaning of “or” is ambigu-
ous when both operands are true; the exclusive “or” operator
excludes that case. The concept may be defined as “one or
the other but not both”, and may be written as “A or B, but
not, A and B”. Generally, XOR is a logical operation that
outputs true only when two inputs differ —one is true, the
other is false. The negation of XOR is a logical bicondi-
tional, which outputs true only when both inputs are the
same. The XOR problems are generally not linearly sepa-
rable, and thus difficult to solve using traditional neural
networks, and in some situations may require multiple
networks to deal with effectively.

“Overfitting” is another issue that may reduce efficiency
of training a neural network. Typically, overfitting of a
neural network generates random error or noise instead of
identifying an underlying relationship between data points in
a particular dataset. Overfitting occurs when a neural net-
work model is excessively complex, such as having too
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many parameters relative to the number of observations or
training inputs. In general, a neural network model with too
little capacity cannot learn the problem, whereas a model
with too much capacity can learn it too well and overfit the
training dataset. In other words, too little learning and the
neural network model will perform poorly on the training
dataset and on new data. Such a model will underfit the
problem. Underfitting may generally be addressed by
increasing capacity of the model. i.e., ability of a model to
fit a variety of functions for mapping inputs to outputs. In
traditional neural networks, increasing the capacity of a
model is typically achieved by changing the structure of the
model, such as adding more layers and/or more nodes to
layers.

On the other hand, too much learning and the neural
network model will perform well on the training dataset, but
poorly on new data. Such a model will overfit the problem.
Like in the underfit case, an overfit model does not gener-
alize well and encounters difficulties during image and
pattern recognition. An overfit model is generally diagnosed
by monitoring the performance of the model during training
via evaluating the performance on both a training dataset
and on a holdout or validation dataset. Graphing of learning
curves representing performance of a model overfit during
training typically show a specific pattern—a line for the
training dataset that drops and may plateau, and a line for the
validation dataset that drops at first, and then at some point
again begins to rise.

Disclosed below is a set of modules configured to modify
operative structure of the p-net 100 during training, in
real-time, to enhance effectiveness of the training of the
p-net and thereby address the above concerns of linear
separability, XOR, overfitting, as well as other problems that
may be encountered in neural networks. To such an end, the
p-net 100 includes a structure-forming module. The struc-
ture-forming module 180 is configured to selectively arrange
and rearrange connections between elements of the p-net
100 during the p-net training. The subject p-net 100 ele-
ments include the plurality of inputs 102, the set of neurons
116 and the plurality of synapses 118. The subject p-net 100
elements may also include the training input value array 107,
the neuron outputs 117, the controller 122, and desired
output value array 126. The structure-forming module 180
may be additionally configured to vary a number of the
inputs 102, a number of the neurons 116, and a number of
the synapses 118 during the training of the p-net 100.

Either following the change to the number of the inputs
102, the number of the neurons 116, and the number of the
synapses 118, or in other instances during the p-net 100
training, the structure-forming module 180 may reset a
number of additional parameters of the p-net 100 with the
goal of enhancing the on-going training. For example,
during the training of the p-net 100, the structure-forming
module 180 may reset a degree of connectivity between the
inputs 102 and the neurons 116. Within the context of the
present disclosure, the expression “degree of connectivity”
with respect to inputs and neurons indicates whether con-
nections between some inputs 102 and some neurons 116
have an operative or active state or status, a restricted state,
or an inactive state. Accordingly, during the training of the
p-net 100, the structure-forming module 180 may selectively
activate and deactivate operative connection(s) between
particular input(s) 102 and neuron(s) 116. Additionally,
during the training of the p-net 100, the structure-forming
module 180 may activate a connection between a specific
input 102 and a neuron 116 through a “pass coeflicient”, or
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connectivity filter, thereby restricting the contribution or
weight of the subject neuron within the on-going training of
the p-net 100.

Also, during the training of the p-net 100, the structure-
forming module 180 may reset a number of the neuron
outputs 117. During the training of the p-net 100, the
structure-forming module 180 may also reset a number of
the corrective weights 112 on each respective synapse 118.
Additionally, during the training of the p-net 100, the
structure-forming module 180 may reset the weight values
of the corrective weights 112. Furthermore, during the
training of the p-net 100, the structure-forming module 180
may reset input indexes, interval indexes, neuron indexes,
and change access indexes correspondingly with the above
changes in p-net structure.

The p-net 100 additionally includes a signal allocation
module 182. The signal allocation module 182 is configured
to distribute, for example assign, allocate and reallocate, and
selectively direct and redirect, the input signals 104, i.e., the
signals describing the training images 106, among elements
of the p-net 100 during the p-net training. The signal
allocation module 182 may be further configured to select
one or more corrective weights 112 from the plurality of
corrective weights, such as from the corrective weight array
119, in correlation with the respective input 102 signal
values. The signal allocation module 182 may be configured
to codify the training images 106 as the training input value
array 107. The p-net 100 further includes a training module
184 in operative communication with the controller, the
structure-forming module, and the signal allocation module.
The training module 184 is configured to command and
coordinate operation of the controller 122, the structure-
forming module 180, and the signal allocation module 182
to reorganize the operative structure of the p-net 100 during
the p-net training. Such reorganization of the operative
structure of the p-net 100, via the training module 184,
during the p-net training, thereby controls, in real-time, the
training of the p-net, and ultimately generates the trained
p-net 100A.

The training module 184 may be additionally configured
to access dedicated testing input signals 186, each having a
value. The testing input signals 186 may for example be
testing training images. The received input signals 104,
which together generally describe respective input images
106 may include the testing input signals 186. The training
module 184 may be additionally configured to access
desired testing output signals 188, each having a value. The
desired testing output signals 188 may for example be
desired testing output images. Consistent with the structure
of the p-net 100 employing arrays and matrices, the training
module 184 may be correspondingly configured to access an
array 190 of dedicated testing images, which may be orga-
nized as a dedicated testing images matrix analogous to
other matrices described elsewhere in the present disclosure.
Similarly, the training module 184 may be configured to
access an array 192 of desired testing output signals, which
may be organized as a dedicated testing desired testing
output images matrix.

Additionally, the training module 184 may be configured
to input the accessed testing input signals 186, or the
accessed array 190 or matrix of testing images, and the
desired testing output signals 188, or the accessed array 192
or matrix of desired testing output images into the p-net 100,
during the training of p-net 100. The training module 184
may be further configured to determine a difference 194
between the values of testing input signals 186 and the
values of desired testing output signals 188 during the
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training. Determination of the difference 194 the values of
signals 186 and 188 is intended to evaluate the success of the
recognition and identification of the desired testing output
images. In turn, the appraisal of success of recognition and
identification of the desired testing output images facilitates
an evaluation of effectiveness or quality of the ongoing
training of the p-net 100. In other words, if the testing image
recognition is deemed acceptable, i.e., within predetermined
parameters, which may be preset within the training module
184, the recognition of the training images 106 will be
deemed acceptable as well, and the training may be permit-
ted to proceed. If, on the other hand, the effectiveness of
testing image recognition is deemed unacceptable, the train-
ing module 184 may instruct the structure-forming module
180 to reset appropriate parameters of the p-net 100 and the
signal allocation module 182 to distribute and selectively
direct and redirect the input signals 104, thus facilitating
another iteration of testing. Thus, the effectiveness of testing
image recognition may trigger a feedback loop via the
evaluated effectiveness of the ongoing training of the p-net
100.

The training module 184 may be further configured to
select one or more input signals from the received input
signals 104 and alter the selected input signal to be used
specifically for testing the effectiveness of the training of the
p-net 100. The altered selected input signal(s), herein spe-
cifically identified via numeral 196, may be indicative of a
purposefully corrupted image. The training module 184 may
be further configured to communicate the altered input
signal(s) 196 to the controller 122. The controller 122 may
then compare the altered input signal(s) 196 with the desired
testing output signal(s) 188. Accordingly, such a corrupted
image 196 may be used for comparison with the desired
testing output image 188 to facilitate evaluation of resultant
identification of the desired testing output image and the
effectiveness of the ongoing training of the p-net 100. The
altered input signal(s) 196 may be triggered in a feedback
loop during the ongoing training of the p-net 100.

FIG. 5 depicts a method 400 of training the p-net 100
having the operative structure described above with respect
to FIGS. 1-4, including the structure-forming module 180,
the signal allocation module 182, and the training module
184. The method 400 is configured to enhance training of the
p-net 100 when operated on an apparatus, such as a com-
puter, or a system of computers employed in implementing
supervised training using one or more data processors, such
as the processor 150. The method 400 may be programmed
into a non-transitory computer-readable storage device for
operating the p-net 100 and encoded with instructions
executable to perform the method.

The method 400 commences in frame 402 where the
method includes receiving, via the plurality of inputs 102,
the training images 106. As described above with respect to
structure of the p-net 100 depicted in FIG. 1, the training
images 106 may either be received as the training input
value array 107 prior to commencement of the subject
training phase or codified as the training input value array
during the actual training phase. Following frame 402, the
method advances to frame 404. In frame 404, the method
includes organizing the corrective weights 112 of the plu-
rality of synapses 118 in the corrective weight array 119. As
described above with respect to the structure of the p-net
100, each synapse 118 is connected to one of the plurality of
inputs 102 and includes a plurality of corrective weights 112.

After frame 404, the method proceeds to frame 406, in
which the method includes generating the neuron sum array
120 via the plurality of neurons 116. As described above
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with respect to the structure of the p-net 100, each neuron
116 has at least one output 117 and is connected with at least
one of the plurality of inputs 102 via at least one of the
plurality of synapses 118. Furthermore, each neuron 116 is
configured to add up the weight values of the corrective
weights 112 corresponding to each synapse 118 connected to
the respective neuron. Following frame 406, in frame 408,
the method includes receiving, via the controller 122,
desired images 124 organized as the desired output value
array 126. After frame 408, the method proceeds to frame
410, in which the method includes determining, via the
controller 122, the deviation 128 of the neuron sum array
120 from the desired output value array 126 and thereby
generate the deviation array 132.

Following frame 410, the method advances to frame 412.
In frame 412, the method includes modifying, via the
controller 122, the corrective weight array 119 using the
determined deviation array 132. The modified corrective
weight values of the modified corrective weight array 119
may subsequently be added or summed up and then used to
determine a new neuron sum array 120. The summed
modified corrective weight values of the modified corrective
weight array 119 may then serve to reduce or minimize the
deviation of the neuron sum array 120 from the desired
output value array 126 and generate the trained corrective
weight array 134. The deviation array 132 may be deter-
mined as sufficiently minimized when the deviation 128 of
the neuron sum array 120 from the desired output value
array 126 is within the acceptable range 139 of the array of
target deviation 138, as described above with respect to the
structure of the p-net 100A. The trained corrective weight
array 134 includes the trained corrective weights 112A
determined using the deviation array 132 and thereby trains
the p-net 100.

As described above with respect to the structure of the
p-net 100, each of the training input value array 107, the
corrective weight array 119, neuron sum array 120, desired
output value array 126, deviation array 132, trained correc-
tive weight array 134, and target deviation array 138 may be
organized, respectively, as the training input value matrix
141, corrective weight matrix 142, neuron sum matrix 143,
desired output value matrix 144, deviation matrix 145,
trained corrective weight matrix 146, and target deviation
matrix 148.

After frame 412, the method advances to frame 414. In
frame 414, the method includes selectively arranging and
rearranging connections between neural network elements,
including the plurality of inputs 102, the plurality of neurons
116, and the plurality of synapses 118, during the training of
the p-net 100 via the structure-forming module 180. In frame
414, the method may also include varying the number of the
inputs 102, the number of the neurons 116, and the number
of the synapses 118, via the structure-forming module 180,
during the training of the p-net 100. Additionally, during the
training of the p-net 100, in frame 414, the method may
include resetting via the structure-forming module 180 the
degree of connectivity between the inputs 102 and the
neurons 116, the number of the neuron outputs 117, the
number of the corrective weights 112 on each respective
synapse 118; and the weight values of the corrective weights
112.

Following frame 414, the method advances to frame 416.
In frame 416, the method includes distributing, such as
selectively directing and redirecting, as well as allocating
and reallocating, the training images 106 among the p-net
100 elements via the signal allocation module 182 during the
training of the p-net. In frame 416, the method may also

11/19/2022 18:03:49

20

25

30

35

40

45

50

55

60

65

16

include accessing, via the training module 182, the array of
dedicated testing input images 190 or matrix of dedicated
testing input images having respective testing input values.
In frame 416, the method may also include accessing, via the
training module 182, the array 192 or matrix of desired
testing output images having respective desired testing out-
put values. In frame 416, the method may additionally
include inputting, via the training module 182, the accessed
array 190, or matrix of testing input images and the accessed
array 192, or matrix of desired testing output images into the
p-net 100 during the training of the p-net. Furthermore, in
frame 416, the method may include determining, via the
training module 182, the difference 194 between the testing
input images 186 in the respective array 190 or matrix, and
the desired testing output images 188 in the respective array
192 or matrix during the training of the p-net 100 to thereby
evaluate effectiveness of the ongoing training.

Moreover, in frame 416, the method may include select-
ing, via the training module 182, the training image(s) 104
from the training input value array 107. Also, in frame 416,
the method may include altering the selected training
image(s) 104 to generate the altered selected training image
196. As described above with respect to FIGS. 1-4, the
altered selected input image(s) 196 may be indicative of
purposefully corrupted image(s). And then, in frame 416, the
method may include communicating thus altered selected
training image(s) 196 to the controller 122 for comparing the
altered input image(s) 196 with the desired testing output
image(s) 188. Accordingly, such corrupted image(s) 196
may be used for comparison with the desired testing output
image(s) 188 to facilitate evaluation of resultant identifica-
tion of the desired testing output image(s) and the corre-
sponding effectiveness of the ongoing training of the p-net
100.

The training module 184 may be further configured to
select one or more input signals from the received input
signals 104 and alter the selected input signal to be used
specifically for testing the effectiveness of the training of the
p-net 100. The altered selected input signal(s), herein spe-
cifically identified via numeral 196, may be indicative of a
purposefully corrupted image. The training module 184 may
be further configured to communicate the altered input
signal(s) 196 to the controller 122. The controller 122 may
then compare the altered input signal(s) 196 with the desired
testing output signal(s) 188. Accordingly, such a corrupted
image 196 may be used for comparison with the desired
testing output image 188, to facilitate evaluation of resultant
identification of the desired testing output image 188 and the
effectiveness of the ongoing training of the p-net 100. The
altered input signal(s) 196 may be employed in a feedback
loop during the ongoing training of the p-net 100.

After frame 416, the method proceeds to frame 418, in
which the method includes commanding and coordinating
operation of the controller 122, the structure-forming mod-
ule 180, and the signal allocation module 182 to reorganize
the operative structure of the p-net 100 during the training of
the p-net via the training module 184. As described above
with respect to FIGS. 1-4, reorganizing the operative struc-
ture of the p-net 100 is thereby intended to control, in
real-time, the training of the p-net 100 and enhance the
effectiveness of the ongoing training of the p-net 100.
Following frame 418 the method 400 may return to frame
402 for additional enhanced training of the p-net 100 via the
structure-forming module 180, the signal allocation module
182, and the training module 184, if the achieved image
recognition is deemed insufficiently precise, or the method
may conclude in frame 420.

Page 15 of 18



US 11,494,653 B2

17

A “division by zero” situation may be encountered in
coding of data and specifically with respect to programming
of neural networks. There are various known solutions to
deal with such a contingency. For example, in programming,
division by zero may be resolved by using the function
“NULLIF” which compares two expressions and returns
null rather than zero, if the two expression are equal, or
otherwise returns the first expression.
Overall, the reorganizing of the operative structure of the
p-net 100 via the training module 184 during the ongoing
training of the p-net through cooperation between the con-
troller 122, the structure-forming module 180, and the signal
allocation module 182 is intended to address, in real-time,
effectiveness of the training which may be impacted by
various data characteristics, data organization, coding, and
computation issues, including the previously noted linear
separability, XOR, and overfitting. As described above, such
reorganizing of the p-net 100 operative structure may be
based on continuous evaluation of the effectiveness of
ongoing training of p-net via the training module 184.
The detailed description and the drawings or figures are
supportive and descriptive of the disclosure, but the scope of
the disclosure is defined solely by the claims. While some of
the best modes and other embodiments for carrying out the
claimed disclosure have been described in detail, various
alternative designs and embodiments exist for practicing the
disclosure defined in the appended claims. Furthermore, the
embodiments shown in the drawings or the characteristics of
various embodiments mentioned in the present description
are not necessarily to be understood as embodiments inde-
pendent of each other. Rather, it is possible that each of the
characteristics described in one of the examples of an
embodiment may be combined with one or a plurality of
other desired characteristics from other embodiments,
resulting in other embodiments not described in words or by
reference to the drawings. Accordingly, such other embodi-
ments fall within the framework of the scope of the
appended claims.
What is claimed is:
1. An operative structure of a neural network, the opera-
tive structure comprising:
a plurality of inputs of the neural network, each of the
respective inputs being configured to receive an input
signal having an input value;
a plurality of synapses, wherein each of the synapses is
connected to one of the plurality of inputs and includes
a plurality of corrective weights, wherein each of the
corrective weights is defined by a weight value, and
wherein each of the synapses communicates weight
signals indicative of weight values of the corrective
weights;
a set of neurons, wherein each of the neurons has at least
one output and is connected with at least one of the
plurality of inputs via at least one of the plurality of
synapses, and wherein each of the respective neurons is
configured to receive the weight signals from the at
least one of the plurality of synapses and add up the
weight values of the corrective weights selected from
each synapse connected to the respective neuron and
thereby generate a neuron sum;
a controller configured to:
receive a desired output signal having a value, deter-
mine a deviation of the neuron sum from the desired
output signal value; and

modify respective corrective weight values using the
determined deviation, such that adding up the modi-
fied corrective weight values to determine the neuron
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sum minimizes the deviation of the neuron sum from
the desired output signal value to thereby train the
neural network;

a structure-forming module configured to selectively
arrange and rearrange connections between neural net-
work elements, including the plurality of inputs, the set
of neurons, and the plurality of synapses, during the
training of the neural network;

a signal allocation module configured to distribute the
input signals among the neural network elements dur-
ing the training of the neural network; and

a training module configured to command and coordinate
operation of the controller, the structure-forming mod-
ule, and the signal allocation module to reorganize the
operative structure of the neural network during the
training of the neural network to thereby control, in
real-time, the training of the neural network.

2. The neural network operative structure of claim 1,
wherein the signal allocation module is further configured to
select one or more corrective weights from the plurality of
corrective weights in correlation with the input signal value.

3. The neural network operative structure of claim 1,
further comprising a set of distributors, wherein each of the
distributors is operatively connected to one of the plurality
of inputs for receiving the respective input signal and is
configured to select one or more corrective weights from the
plurality of corrective weights in correlation with the input
value.

4. The neural network operative structure of claim 1,
wherein the structure-forming module is additionally con-
figured to vary a number of the inputs, a number of the
neurons, and a number of the synapses during the training of
the neural network.

5. The neural network operative structure of claim 4,
wherein, during the training of the neural network, the
structure-forming module is additionally configured to reset:

a degree of connectivity between the inputs and the
neurons;

a number of the outputs;

a number of the corrective weights on each respective
synapse; and

the weight values of the corrective weights.

6. The neural network operative structure of claim 1,
wherein the training module is additionally configured to:

access a testing input signal having a value and access a
desired testing output signal; and

determine a difference between the testing input signal
and the desired testing output signal value during the
training to thereby evaluate effectiveness of ongoing
training of the neural network.

7. The neural network operative structure of claim 6,
wherein the received input signals include the testing input
signal.

8. The neural network operative structure of claim 6,
wherein the training module is further configured to select
an input signal from the received input signals, alter the
selected input signal, and communicate the altered selected
input signal to the controller to compare the altered selected
input signal with the desired testing output signal and
thereby evaluate the effectiveness of the ongoing training.

9. A method of training a neural network having an
operative structure, the method comprising:

receiving training images via a plurality of inputs to the
neural network, wherein the training images are one of
received as a training input value array and codified as
the training input value array during training of the
neural network;
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organizing corrective weights of a plurality of synapses in
a corrective weight array, wherein each of the synapses
is connected to one of the plurality of inputs and
includes a plurality of corrective weights, and wherein
each of the corrective weights is defined by a weight
value;

generating a neuron sum array via a plurality of neurons,

wherein each of the neurons has at least one output and
is connected with at least one of the plurality of inputs
via at least one of the plurality of synapses, and wherein
each respective neuron of the plurality of neurons is
configured to add up the weight values of the corrective
weights corresponding to each synapse connected to
the respective neuron;

receiving, via a controller, desired images organized as a

desired output value array;

determining, via the controller, a deviation of the neuron

sum array from the desired output value array and
generate a deviation array;
modifying, via the controller, the corrective weight array
using the determined deviation array, such that adding
up the modified corrective weight values to determine
the neuron sum array reduces the deviation of the
neuron sum array from the desired output value array to
generate a trained corrective weight array and thereby
facilitate concurrent training of the neural network; and

selectively arranging and rearranging connections
between neural network elements, including the plu-
rality of inputs, the plurality of neurons, and the plu-
rality of synapses, during the training of the neural
network via a structure-forming module;

distributing the training images among the neural network

elements via a signal allocation module during the
training of the neural network; and

commanding and coordinating operation of the controller,

the structure-forming module, and the signal allocation
module to reorganize the operative structure of the
neural network during the training of the neural net-
work via a training module, to thereby control, in
real-time, the training of the neural network.

10. The method of claim 9, further comprising codifying,
via the signal allocation module, the training images as the
training input value array.

11. The method of claim 9, further comprising codifying,
via a set of distributors, the training images as the training
input value array, wherein the set of distributors is opera-
tively connected to the plurality of inputs for receiving the
respective training images.

12. The method of claim 9, further comprising varying a
number of the inputs, a number of the neurons, and a number
of the synapses, via the structure-forming module, during
the training of the neural network.

13. The method of claim 12, further comprising, during
the training of the neural network, resetting via the structure-
forming module:

a degree of connectivity between the inputs and the

neurons;

a number of the outputs;

a number of the corrective weights on each respective

synapse; and

the weight values of the corrective weights.

14. The method of claim 9, further comprising, via the
training module:

accessing an array of testing input images having respec-

tive testing input values;

accessing an array of desired testing output images having

respective desired testing output values;
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inputting the accessed array of testing input images and
the accessed array of desired testing output images into
the neural network during the training; and

determining a difference between the testing input images
and the desired testing output images during the train-
ing to thereby evaluate effectiveness of ongoing train-
ing of the neural network.

15. The method of claim 14, wherein the training input

value array includes the array of testing images.
16. The method of claim 14, further comprising, via the
training module, selecting a training image from the
received training images, altering the selected training
image, and communicating the altered selected training
image to the controller to compare the altered selected
training image with the desired testing output image and
thereby evaluate the effectiveness of the ongoing training.
17. An operative structure of a neural network, the opera-
tive structure comprising:
a plurality of inputs to the neural network configured to
receive training images, wherein the training images
are one of received as a training input value array and
codified as the training input value array during training
of the neural network;
a plurality of synapses, wherein each synapse is con-
nected to one of the plurality of inputs and includes a
plurality of corrective weights, wherein each of the
plurality of corrective weights is defined by a weight
value, wherein the plurality of corrective weights of the
plurality of synapses are organized in a corrective
weight array, and wherein each synapse communicates
weight signals indicative of weight values of the
respective corrective weights;
a plurality of neurons, wherein each neuron has at least
one output and is connected with at least one of the
plurality of inputs via at least one of the plurality of
synapses, and wherein each of the plurality of neurons
is configured to receive the weight signals from the at
least one of the plurality of synapses and add up the
weight values of the plurality of corrective weights
corresponding to each of the plurality of synapses
connected to the respective neuron, such that the plu-
rality of neurons generate a neuron sum array; and
a controller configured to:
receive desired images organized as a desired output
value array;

determine a deviation of the neuron sum array from the
desired output value array and generate a deviation
array; and

modify the corrective weight array using the deter-
mined deviation array, such that adding up the modi-
fied corrective weight values to determine the neuron
sum array reduces the deviation of the neuron sum
array from the desired output value array to generate
a trained corrective weight array and thereby facili-
tate concurrent training of the neural network.

18. The neural network operative structure of claim 17,
further comprising:

a structure-forming module configured to selectively
arrange and rearrange connections between neural net-
work elements, including the plurality of inputs, the
plurality of neurons, and the plurality of synapses,
during the training of the neural network;

a signal allocation module configured to distribute the
training images among the neural network elements
during the training of the neural network; and

a training module configured to command and coordinate
operation of the controller, the structure-forming mod-
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ule, and the signal allocation module to reorganize the
operative structure of the neural network during the
training of the neural network to thereby control, in
real-time, the training of the neural network.

19. The neural network operative structure of claim 18, 5
wherein the signal allocation module is further configured to
codify each of the training images and input images as the
respective training input value array and input value array.

20. The neural network operative structure of claim 18,
wherein the structure-forming module is additionally con- 10
figured to vary a number of the inputs, a number of the
neurons, and a number of the synapses during the training of
the neural network.
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