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(57) ABSTRACT 

A neural network includes a plurality of inputs for receiving 
input signals, and synapses connected to the inputs and hav­
ing corrective weights. The network additionally includes 
distributors. Each distributor is connected to one of the inputs 
for receiving the respective input signal and selects one or 
more corrective weights in correlation with the input value. 
The network also includes neurons. Each neuron has an out­
put connected with at least one of the inputs via one synapse 
and generates a neuron sum by summing corrective weights 
selected from each synapse connected to the respective neu­
ron. Furthermore, the network includes a weight correction 
calculator that receives a desired output signal, determines a 
deviation of the neuron sum from the desired output signal 
value, and modifies respective corrective weights using the 
determined deviation. Adding up the modified corrective 
weights to determine the neuron sum minimizes the subject 
deviation for training the neural network. 

16 Claims, 13 Drawing Sheets 
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NEURAL NETWORK AND METHOD OF 
NEURAL NETWORK TRAINING 

CROSS-REFERENCE TO RELATED 
APPLICATION(S) 

This application is a continuation of International Appli­
cation Serial No. PCT/US 2015/19236whichclaims the ben-
efit ofU.S. Provisional Application Ser. No. 61/949,210 filed 
Mar. 6, 2014, and U.S. Provisional Application Ser. No. 10 

62/106,389 filed Jan. 22, 2015, the entire contents of which 
are hereby incorporated by reference. 

2 
a weight correction calculator configured to receive a desired 
output signal having a value, determine a deviation of the 
neuron sum from the desired output signal value, and modifY 
respective corrective weight values using the determined 
deviation. Adding up the modified corrective weight values to 
determine the neuron sum minimizes the deviation of the 
neuron sum from the desired output signal value in order to 
provide training the neural network. 

The determination of the deviation of the neuron sum from 
the desired output signal may include division of the desired 
output signal value by the neuron sum to thereby generate a 
deviation coefficient. Additionally, the modification of the 
respective corrective weights may include multiplication of 

TECHNICAL FIELD 
15 

each corrective weight used to generate the neuron sum by the 

The disclosure relates to an artificial neural network and a 
method of training the same. 

BACKGROUND 

deviation coefficient. 
The deviation of the neuron sum from the desired output 

signal may be a mathematical difference therebetween. In 
such a case, the generation of the respective modified correc-

In machine learning, artificial neural networks are a family 
20 tive weights may include apportionment of the mathematical 

difference to each corrective weight used to generate the 
neuron sum. Such apportionment of the mathematical differ­
ence to each corrective weight is intended to converge each 

of statistical learning algorithms inspired by biological neural 
networks, a.k.a., the central nervous systems of animals, in 
particular the brain. Artificial neural networks are primarily 
used to estimate or approximate generally unknown functions 25 

that can depend on a large number of inputs. Such neural 
networks have been used for a wide variety of tasks that are 
difficult to resolve using ordinary rule-based programming, 
including computer vision and speech recognition. 

neuron sum on the desired signal value. 
The apportionment of the mathematical difference may 

also include dividing the determined difference equally 
between each corrective weight used to generate the neuron 
sum. 

The distributor may be additionally configured to assign a 
plurality of coefficients of impact to the plurality of corrective 
weights, such that each coefficient of impact is assigned to 
one of the plurality of corrective weights in a predetermined 
proportion to generate the neuron sum. 

Each respective plurality of coefficients of impact may be 

Artificial neural networks are generally presented as sys- 30 

terns of "neurons" which can compute values from inputs, 
and, as a result of their adaptive nature, are capable of 
machine learning, as well as pattern recognition. Each neuron 
frequently connects with several inputs through synapses 
having synaptic weights. 35 defined by an impact distribution function. The plurality of 

input values my be received into a value range divided into 
intervals according to an interval distribution function, such 
that each input value is received within a respective interval, 

Neural networks are not progrmed as typical software, 
but are trained. Such training is typically accomplished via 
analysis of a sufficient number of representative examples 
and by statistical or algorithmic selection of synaptic weights, 
so that a given set of input images corresponds to a given set 40 

of output images. A common criticism of classical neural 
networks is that significant time and other resources are fre­
quently required for their training. 

Various artificial neural networks are described in the fol­
lowing U.S. Pat. Nos. 4,979,124; 5,479,575; 5,493,688; 45 

5,566,273; 5,682,503; 5,870,729; 7,577,631; and 7,814,038. 

SUMMARY 

and each corrective weight corresponds to one of the inter­
vals. Also, each distributor may use the respective received 
input value of the input signal to select the respective interval. 
Additionally, each distributor may assign the respective plu­
rality of coefficients of impact to the corrective weight corre­
sponding to the selected respective interval and to at least one 
corrective weight corresponding to an interval adjacent to the 
selected respective interval 

Each neuron may be configured to add up a product of the 
corrective weight and the assigned coefficient of impact for 
all the synapses connected thereto. 

The predetermined proportion of the coefficients of impact 
may be defined according to a statistical distribution, such as 
using a Gaussian function. 

A neural network includes a plurality of network inputs, so 
such that each input is configured to receive an input signal 
having an input value. The neural network also includes a 
plurality of synapses, wherein each synapse is connected to 
one of the plurality of inputs and includes a plurality of 
corrective weights, wherein each corrective weight is defined 

The weight correction calculator may be configured to 
apply a portion of the determined difference to each correc-

55 tive weight used to generate the neuron sum according to the 
proportion established by the respective coefficient of impact. by a weight value. The neural network additionally includes a 

set of distributors. Each distributor is operatively connected 
to one of the plurality of inputs for receiving the respective 
input signal and is configured to select one or more corrective 
weights from the plurality of corrective weights in correlation 
with the input value. The neural network also includes a set of 
neurons. Each neuron has at least one output and is connected 
with at least one of the plurality of inputs via one of the 
plurality of synapses synapse and is configured to add up the 
weight values of the corrective weights selected from each 
synapse connected to the respective neuron and thereby gen­
erate a neuron sum. Furthermore, the neural network includes 

Each corrective weight may additionally be defined by a set 
of indexes. Such indexes may include an input index config­
ured to identify the corrective weight corresponding to the 

60 input, an interval index configured to specify the selected 
interval for the respective corrective weight, and a neuron 
index configured to specify the corrective weight correspond­
ing to the neuron. 

Each corrective weight may be further defined by an access 
65 index configured to tally a number of times the respective 

corrective weight is accessed by the input signal during train­
ing of the neural network. 
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A method of training such a neural network is also dis­
closed. 

The above features and advantages, and other features and 
advantages of the present disclosure, will be readily apparent 
from the following detailed description of the embodiment(s) 
and best mode(s) for carrying out the described disclosure 
when taken in connection with the accompanying drawings 
and appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an illustration of a prior art, classical artificial 
neural network. 

FIG. 2 is an illustration of a "progressive neural network" 
(p-net) having a plurality of synapses, a set of distributors, 
and a plurality of corrective weights associated with each 
synapse. 

FIG. 3A is an illustration of a portion of the p-net shown in 
FIG. 2, having a plurality of synapses and one synaptic weight 
positioned upstream of each distributor. 

FIG. 3B is an illustration of a portion of the p-net shown in 
FIG. 2, having a plurality of synapses and a set of synaptic 
weights positioned downstream of the respective plurality of 
corrective weights. 

FIG. 3C is an illustration of a portion of the p-net shown in 
FIG. 2, having a plurality of synapses and one synaptic weight 
positioned upstream of each distributor and a set of synaptic 
weights positioned downstream of the respective plurality of 
corrective weights. 

FIG. 4A is an illustration of a portion of the p-net shown in 
FIG. 2, having a single distributor for all synapses of a given 
input and one synaptic weight positioned upstream of each 
distributor. 

FIG. 4B is an illustration of a portion of the p-net shown in 
FIG. 2, having a single distributor for all synapses of a given 
input and a set of synaptic weights positioned downstream of 
the respective plurality of corrective weights. 

4 
FIG. 10 is an illustration of an embodiment of the p-net 

shown in FIG. 2, depicting a uniform distribution of training 
deviation between corrective weights. 

FIG. 11 is an illustration of an embodiment of the p-net 
shown in FIG. 2, employing modification of the corrective 
weights during p-net training 

FIG. 12 is an illustration of an embodiment of the p-net 
shown in FIG. 2, wherein the basic algorithm generates a 
primary set of output neuron sums, and wherein the generated 

10 set is used to generate several "winner" sums with either 
retained or increased values and the contribution of remaining 
sums is negated. 

FIG. 13 is an illustration of an embodiment of the p-net 
shown in FIG. 2 recognizing a complex image with elements 

15 of multiple images. 
FIG. 14 is an illustration of a model for object oriented 

programming for the p-net shown in FIG. 2 using Unified 
Modeling Language (UML). 

FIG.15 is an illustration of a general formation sequence of 
20 the p-net shown in FIG. 2. 

FIG. 16 is an illustration of representative analysis and 
preparation of data for formation of the p-net shown in FIG. 2. 

FIG. 17 is an illustration of representative input creation 
permitting interaction of the p-net shown in FIG. 2 with input 

25 data during training and p-net application. 

30 

FIG. 18 is an illustration of representative creation of neu­
ron units for the p-net shown in FIG. 2. 

FIG. 19 is an illustration of representative creation of each 
synapse connected with the neuron units. 

FIG. 20 is anillustrationoftrainingthep-net shown in FIG. 
2. 

FIG. 21 is an illustration of neuron unit training in the p-net 
shown in FIG. 2. 

FIG. 22 is an illustration of extending of neuron sums 
35 during training of the p-net shown in FIG. 2. 

FIG. 23 is a flow diagram of a method used to train the 
neural network shown in FIGS. 2-22. 

DETAILED DESCRIPTION 
FIG. 4C is an illustration of a portion of the p-net shown in 40 

FIG. 2, having a single distributor for all synapses of a given 
input, and having one synaptic weight positioned upstream of 
each distributor and a set of synaptic weights positioned 
downstream of the respective plurality of corrective weights. 

A classical artificial neural network 10, as shown in FIG. 1, 
typically includes input devices 12, synapses 14 with synaptic 
weights 16, neurons 18, including an adder 20 and activation 
function device 22, neuron outputs 24 and weight correction 
calculator 26. Each neuron 18 is connected through synapses 
14 to two or more input devices 12. The values of synaptic 

FIG. 5 is an illustration of division of input signal value 45 

range into individual intervals in the p-net shown in FIG. 2. 
FIG. 6A is an illustration of one embodiment of a distribu­

tion for values of coefficient of impact of corrective weights 
in the p-net shown in FIG. 2. 

weights 16 are commonly represented using electrical resis­
tance, conductivity, voltage, electric charge, magnetic prop­
erty, or other parameters. 

FIG. 6B is an illustration of another embodiment of the 50 Supervised training of the classical neural network 10 is 
distribution for values of coefficient of impact of corrective 
weights in the p-net shown in FIG. 2. 

FIG. 6C is an illustration of yet another embodiment of the 
distribution for values of coefficient of impact of corrective 
weights in the p-net shown in FIG. 2. 

FIG. 7 is an illustration of an input image for the p-net 
shown in FIG. 2, as well as one corresponding table repre­
senting the image in the form of digital codes and another 
corresponding table representing the same image as a set of 
respective intervals. 

FIG. 8 is an illustration of an embodiment of the p-net 
shown in FIG. 2 trained for recognition of two distinct 
images, wherein the p-net is configured to recognize a picture 
that includes some features of each image; 

FIG. 9 is an illustration of an embodiment of the p-net 
shown in FIG. 2 with an example of distribution of synaptic 
weights around a "central" neuron. 

generally based on an application of a set of training pairs 28. 
Each training pair 28 commonly consists of an input image 
28-1 and a desired output image 28-2, a.k.a., a supervisory 
signal. Training of the classical neural network 10 is typically 

55 provided as follows. An input image in the form of a set of 
input signals (I 1- Im) enters the input devices 12 and is trans­
ferred to the synaptic weights 16 with initial weights (W 1). 

The value of the input signal is modified by the weights, 
typically by multiplying or dividing each signal (11 -Im) value 

60 by the respective weight. From the synaptic weights 16, 
modified input signals are transferred either to the respective 
neurons 18. Each neuron 18 receives a set of signals from a 
group of synapses 14 related to the subject neuron 18. The 
adder 20 included in the neuron 18 sums up all the input 

65 signals modified by the weights and received by the subject 
neuron. Activation function devices 22 receive the respective 
resultant neuron sums and modify the sums according to 
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mathematical function(s), thus forming respective output 
images as sets of neuron output signals (~F 1 ... ~F n). 

The obtained neuron output image defined by the neuron 
output signals ~F 1 ... ~F n) is compared by a weight correc­
tion calculator 26 with pre-determined desired output images 
(01-0n). Based on the determined difference between the 
obtained neuron output image ~F n and the desired output 
image Om correction signals for changing the synaptic 
weights 16 are formed using a pre-programmed algorithm. 
After corrections are made to all the synaptic weights 16, the 
set of input signals (11 -Im) is reintroduced to the neural net­
work 10 and new corrections are made. The above cycle is 
repeated until the difference between the obtained neuron 
output image ~F n and the desired output image On is deter­
mined to be less than some predetermined error. One cycle of 
network training with all the individual images is typically 
identified as a "training epoch". Generally, with each training 
epoch, the magnitude of error is reduced. However, depend­
ing on the number of individual inputs (11 -Im), as well as the 
number of inputs and outputs, training of the classical neural 
network 10 may require a significant number of training 
epochs, which, in some cases, may be as great as hundreds of 
thousands. 

A variety of classical neural networks exist, including 
Hopfield network, Restricted Boltzmann Machine, Radial 
basis function network, and recurrent neural network. Spe­
cific tasks of classification and clustering require a specific 
type of neural network, the Self-Organizing Maps that use 
only input images as network input training information, 
whereas the desired output image, corresponding to a certain 
input image is formed directly during the training process 
based on a single winning neuron having an output signal 
with the maximum value. 

As noted above, one of the main concerns with existing, 
classical neural networks, such as the neural network 10, is 
that successful training thereof may require a significant 
duration of time. Some additional concerns with classical 
networks may be a large consumption of computing 
resources, which would in turn drive the need for powerful 
computers. Additional concerns are an inability to increase 
the size of the network without full retraining of the network, 
a predisposition to such phenomena as "network paralysis" 
and "freezing at a local minimum", which make it impossible 
to predict if a specific neural network would be capable of 
being trained with a given set of images in a given sequence. 
Also there may be limitations related to specific sequencing 
of images being introduced during training, where changing 
the order of introduction of training images may lead to 
network freezes, as well as an inability to perform additional 
training of an already trained network. 

Referring to the remaining drawings, wherein like refer­
ence numbers refer to like components, FIG. 2 shows a sche­
matic view of a progressive neural network, thereafter "pro­
gressive network", or "p-net" 100. The p-net 100 includes a 
plurality or a set of inputs 102 of the p-net. Each input 102 is 
configured to receive an input signal104, wherein the input 
signals are represented as I1 , I2 ... Im in FIG. 2. Each input 
signal I1 , I2 ... Im represents a value of some characteristic(s) 
of an input image 106, for example, a magnitude, frequency, 
phase, signal polarization angle, or association with different 
parts of the input image 106. Each input signal 104 has an 
input value, wherein together the plurality of input signals 
104 generally describes the input image 106. 

Each input value may be within a value range that lies 
between -oo and +oo and can be set in digital and/or analog 
forms. The range of the input values may depend on a set of 
training images. In the simplest case, the range input values 

6 
could be the difference between the smallest and largest val­
ues of input signals for all training images. For practical 
reasons, the range of the input values may be limited by 
eliminating input values that are deemed too high. For 
example, such limiting of the range of the input values may be 
accomplished via known statistical methods for variance 
reduction, such as importance sampling. Another example of 
limiting the range of the input values may be designation of 
all signals that are lower than a predetermined minimum level 

10 to a specific minimum value and designation of all signals 
exceeding a predetermined maximum level to a specific 
maximum value. 

The p-net 100 also includes a plurality or a set of synapses 
118. Each synapse 118 is connected to one of the plurality of 

15 inputs 102, includes a plurality of corrective weights 112, and 
may also include a synaptic weight 108, as shown in FIG. 2. 
Each corrective weight 112 is defined by a respective weight 
value 112. The p-net 100 also includes a set of distributors 
114. Each distributor 114 is operatively connected to one of 

20 the plurality of inputs 102 for receiving the respective input 
signal104. Additionally, each distributor 114 is configured to 
select one or more corrective weights from the plurality of 
corrective weights 112 in correlation with the input value. 

The p-net 100 additionally includes a set of neurons 116. 
25 Each neuron 116 has at least one output 117 and is connected 

with at least one of the plurality of inputs 102 via one synapse 
118. Each neuron 116 is configured to add up or sum the 
corrective weight values of the corrective weights 112 
selected from each synapse 118 connected to the respective 

30 neuron 116 and thereby generate and output a neuron sum 
120, otherwise designated as In. A separate distributor 114 
can be used for each synapse 118 of a given input 102, as 
shown in FIGS. 3A, 3B, and 3C, or a single distributor can be 
used for all such synapses, as shown in FIGS. 4A, 4B, and 4C. 

35 During formation or setup of the p-net 100, all corrective 
weights 112 are assigned initial values, which can change 
during the process of p-net training The initial value of the 
corrective weight 112 may be assigned as in the classical 
neural network 10, for example, the weights may be selected 

40 randomly, calculated with the help of a pre-determined math­
ematical function, selected from a predetermined template, 
etc. 

The p-net 100 also includes a weight correction calculator 
122. The weight correction calculator 122 is configured to 

45 receive a desired, i.e., predetermined, output signal124 hav­
ing a signal value and representing a portion of an output 
image 126. The weight correction calculator 122 is also con­
figured to determine a deviation 128 of the neuron sum 120 
from the value of the desired output signal124, a.k.a., training 

50 error, and modify respective corrective weight values using 
the determined deviation 128. Thereafter, summing the modi­
fied corrective weight values to determine the neuron sum 120 
minimizes the deviation of the subject neuron sum from the 
value of the desired output signal 124 and, as a result, is 

55 effective for training the p-net 100. 
For analogy with the classical network 10 discussed with 

respect to FIG. 1, the deviation 128 may also be described as 
the training error between the determined neuron sum 120 
and the value of the desired output signal124. In comparison 

60 with the classical neural network 10 discussed with respect to 
FIG.1, in thep-net 100 the input values of the input signal104 
only change in the process of general network setup, and are 
not changed during training of the p-net. Instead of changing 
the input value, training of the p-net 100 is provided by 

65 changing the values 112 of the corrective weights 112. Addi­
tionally, although each neuron 116 includes a summing func­
tion, where the neuron adds up the corrective weight values, 
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the neuron 116 does not require, and, in fact, is characterized 
by absence of an activation function, such as provided by the 
activation function device 22 in the classical neural network 
10. 

In the classical neural network 10, weight correction dur­
ing training is accomplished by changing synaptic weights 
16, while in the p-net 100 corresponding weight correction is 
provided by changing corrective weights values 112, as 
shown in FIG. 2. The respective corrective weights 112 may 
be included in weight correction blocks 110 positioned on all 
or some of the synapses 118. In neural network computer 
emulations, each synaptic and corrective weight may be rep­
resented either by a digital device, such as a memory cell, 
and/or by an analog device. In neural network software emu­
lations, the values of the corrective weights 112 may be 
provided via an appropriate programmed algorithm, while in 
hardware emulations, known methods for memory control 
could be used. 

In the p-net 100, the deviation 128 of the neuron sum 120 
from the desired output signal 124 may be represented as a 
mathematically computed difference therebetween. Addi­
tionally, the generation of the respective modified corrective 
weights 112 may include apportionment of the computed 
difference to each corrective weight used to generate the 
neuron sum 120. In such an embodiment, the generation of 
the respective modified corrective weights 112 will permit the 
neuron sum 120 to be converged on the desired output signal 
value within a small number of epochs, in some cases needing 
only a single epoch, to rapidly train thep-net 100. Ina specific 
case, the apportionment of the mathematical difference 
among the corrective weights 112 used to generate the neuron 
sum 120 may include dividing the determined difference 
equally between each corrective weight used to generate the 
respective neuron sum 120. 

In a separate embodiment, the determination of the devia­
tion 128 of the neuron sum 120 from the desired output signal 
value may include division of the desired output signal value 
by the neuron sum to thereby generate a deviation coefficient. 

8 
W, d-l n· In another non-limiting example, the predetermined 
pr~portion of the coefficients of impact 134 may be defined 
according to a statistical distribution. 

Generating the neuron sum 120 may include initially 
assigning respective coefficients of impact 134 to each cor­
rective weight 112 according to the input value 102 and then 
multiplying the subject coefficients of impact by values of the 
respective employed corrective weights 112. Then, summing 
via the each neuron 116 the individual products of the cor-

10 rective weight 112 and the assigned coefficient of impact 134 
for all the synapses 118 connected thereto. 

The weight correction calculator 122 may be configured to 
apply the respective coefficients of impact 134 to generate the 
respective modified corrective weights 112. Specifically, the 

15 weight correction calculator 122 may apply a portion of the 
computed mathematical difference between the neuron sum 
120 and the desired output signal 124 to each corrective 
weight 112 used to generate the neuron sum 120 according to 
the proportion established by the respective coefficients of 

20 impact 134. Additionally, the mathematical difference 
divided among the corrective weights 112 used to generate 
the neuron sum 120 can be further divided by the respective 
coefficient of impact 134. Subsequently, the result of the 
division of the neuron sum 120 by the respective coefficient of 

25 impact 134 can be added to the corrective weight 112 in order 
to converge the neuron sum 120 on the desired output signal 
value. 

Typically formation of the p-net 100 will take place before 
the training of the p-net commences. However, in a separate 

30 embodiment, if during training the p-net 100 receives an input 
signal 104 for which initial corrective weights are absent, 
appropriate corrective weights 112 may be generated. In such 
a case, the specific distributor 114 will determine the appro­
priate interval "d" for the particular input signal 104, and a 

35 group of corrective weights 112 with initial values will be 
generated for the given input 102, the given interval "d", and 
all the respective neurons 116. Additionally, a corresponding 
coefficient of impact 134 can be assigned to each newly 

In such a specific case, the modification of the respective 
modified corrective weights 112 includes multiplication of 40 

each corrective weight used to generate the neuron sum 120 

generated corrective weight 112. 
Each corrective weight 112 may be defined by a set of 

indexes configured to identify a position of each respective 
corrective weight on the p-net 100. The set of indexes may 
specifically include an input index "i" configured to identifY 
the corrective weight 112 corresponding to the specific input 

by the deviation coefficient. Each distributor 114 may addi­
tionally be configured to assign a plurality of coefficients of 
impact 134 to the plurality of corrective weights 112. In the 
present embodiment, each coefficient of impact 134 may be 
assigned to one of the plurality of corrective weights 112 in 
some predetermined proportion to generate the respective 
neuron sum 120. For correspondence with each respective 
corrective weight 112, each coefficient of impact 134 may be 
assigned a "C, d n" nomenclature, as shown in the Figures. 

Each of the. plurality of coefficients of impact 134 corre­
sponding to the specific synapse 118 is defined by a respective 
impact distribution function 136. The impact distribution 
function 136 may be same either for all coefficients of impact 
134 or only for the plurality of coefficients of impact 134 
corresponding a specific synapse 118. Each of the plurality of 
input values may be received into a value range 138 divided 
into intervals or sub-divisions "d" according to an interval 
distribution function 140, such that each input value is 
received within a respective interval "d" and each corrective 
weight corresponds to one of such intervals. Each distributor 
114 may use the respective received input value to select the 
respective interval "d", and to assign the respective plurality 
of coefficients of impact 134 to the corrective weight 112 
corresponding to the selected respective interval "d" and to at 
least one corrective weight corresponding to an interval adja­
cent to the selected respective interval, such as w,.d+l.n or 

45 102, an interval index "d" configured to specify the discussed­
above selected interval for the respective corrective weight, 
and a neuron index "n" configured to specify the corrective 
weight 112 corresponding to the specific neuron 116 with 
nomenclature "W, d n". Thus, each corrective weight 112 cor-

50 responding to a sp~cific input 102 is assigned the specific 
index "i" in the subscript to denote the subject position. Simi­
larly, each corrective weight "W" corresponding to a specific 
neuron 116 and a respective synapse 118 is assigned the 
specific indexes "n" and "d" in the subscript to denote the 

55 subject position of the corrective weight on the p-net 100. The 
set of indexes may also include an access index "a" config­
ured to tally a number of times the respective corrective 
weight 112 is accessed by the input signal1 04 during training 
of the p-net 100. In other words, each time a specific interval 

60 "d" and the respective corrective weight 112 is selected for 
training from the plurality of corrective weights in correlation 
with the input value, the access index "a" is incremented to 
count the input signal. The access index "a" may be used to 
further specifY or define a present status of each corrective 

65 weight by adopting a nomenclature "W, dna"· Each of the 
indexes "i", "d", "n", and "a" can be num"e;i~al values in the 
range ofO to +oo. 
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Various possibilities of dividing the range of input signals 
104 into intervals d0 , d1 ... dm are shown in FIG. 5. The 
specific interval distribution can be uniform or linear, which, 
for example, can be achieved by specifying all intervals "d" 
with the same size. All input signals 104 having their respec­
tive input signal value lower than a predetermined lowest 
level can be considered to have zero value, while all input 
signals having their respective input signal value greater than 
a predetermined highest level can be assigned to such highest 
level as also shown in FIG. 5. The specific interval distribu­
tion ~an also be non-uniform or nonlinear, such as symmetri­
cal, asymmetrical, or unlimited. Nonlinear distribution of 
intervals "d" may be useful when the range of the input 
signals 104 is considered to be impractically large, and a 
certain part of the range could include input signals consid­
ered to be most critical, such as in the beginning, in the 
middle, or at end of the range. The specific interval distribu­
tion can also be described by a random function. All the 
preceding examples are of the non-limiting nature, as other 
variants of intervals distribution are also possible. 

The number of intervals "d" within the selected range of 
input signals 104 may be increased to optimize the p-net 100. 
Such optimization of the p-net 100 may be desirable, for 
example, with the increase in complexity of training the input 
images 106. For example, a greater number of intervals may 
be needed for multi-color images as compared with mono­
color images, and a greater number of intervals may be 
needed for complex ornaments than for simple graphics. An 
increased number of intervals may be needed for precise 
recognition of images with complex color gradients as com­
pared with images described by contours, as well for a larger 
overall number of training images. A reduction in the number 
of intervals "d" may also be needed in cases with a high 
magnitude of noise, a high variance in training images, and 
excessive consumption of computing resources. 

Depending on the task or type of information handled by 
the p-net 100, for example, visual or textual data, data from 
sensors of various nature, different number of intervals and 
the type of distribution thereof can be assigned. For each input 
signal value interval "d", a corresponding corrective weight 

10 
a value of 1 (one) to the coefficient of impact 134 (C,.d.n), 
while corrective weights for other intervals may receive a 
value of 0 (zero). 

The p-net 100 is focused on reduction of time duration and 
usage of other resources during training of the p-net, as com­
pared with classical neuron network 10. Although some oft.he 
elements disclosed herein as part of the p-net 100 are desig­
nated by certain names or identifiers known to those familiar 
with classical neural networks, the specific names are used for 

10 simplicity and may be employed differently from their coul_l­
terparts in classical neural networks. For example, synapt1c 
weights 16 controlling magnitudes of the input signals (11 -Im) 
are instituted during the process of general setup of the clas­
sical neural network 10 and are changed during training of the 

15 classical network. On the other hand, training of the p-net 100 
is accomplished by changing the corrective weights 112, 
while the synaptic weights 108 do not change during training 
Additionally, as discussed above, each of the neurons 116 
includes a summing or adding component, but does not 

20 include an activation function device 22 that is typical to the 
classical neural network 10. 

In general, the p-net 100 is trained by training each neuron 
unit 119 that includes a respective neuron 116 and all the 
connecting synapses 118, including the particular neuron and 

25 all the respective synapses 118 and correction weights 112 
connected with the subject neuron. Accordingly, training of 
the p-net 100 includes changing corrective weights 112 con­
tributing to the respective neuron 116. Changes to the correc­
tive weights 112 take place based on a group-training algo-

30 rithm included in a method 200 disclosed in detail below. In 
the disclosed algorithm, training error, i.e., deviation 128, is 
determined for each neuron, based on which correction val­
ues are determined and assigned to each of the weights 112 
used in determining the sum obtained by each respective 

35 neuron 116. Introduction of such correction values during 
training is intended to reduce the deviations 128 for the sub­
ject neuron 116 to zero. During training with additional 
images, new errors related to images utilized earlier may 
again appear. To eliminate such additional errors, .a~ter 

40 completion of one training epoch, errors for all trmmng 
images of the entire p-net 100 may be calculated, and if such 
errors are greater than pre-determined values, one or more 
additional training epochs may be conducted until the errors 

of the given synapse with the index "d" may be assigned. 
Thus a certain interval "d" will include all corrective weights 
112 ~ith the index "i" relevant to the given input, the index 
"d" relevant to the given interval; and all values for the index 

45 
"n" from 0 ton. In the process of training the p-net 100, the 
distributor 114 defines each input signal value and thus relates 
the subject input signal1 04 to the corresponding interval "d". 
For example, if there are 10 equal intervals "d" within the 
range of input signals from 0 to 100, the input signal having a 
value between 30 and 40 will be related to the interval 3, i.e., 

become less than a target or predetermined value. 
FIG. 23 depicts themethod200 oftrainingthep-net 100, as 

described above with respect to FIGS. 2-22. The method 200 
commences in frame 202 where the method includes receiv­
ing, via the input 102, the input signal104 having the input 
value. Following frame 202, the method advances to frame 

so 204. In frame 204, the method includes communicating the 
input signal104 to the distributor 114 operatively connected 
to the input 102. Either in frame 202 or frame 204, the method 
200 may include defining each corrective weight 112 by the 
set of indexes. As described above with respect to the struc-

"d"=3. 
For all corrective weights 112 of each synapse 118 con­

nected with the given input 102, the distributor 114 can assign 
values of the coefficient of impact 134 in accordance with the 
interval "d" related to the particular input signal. The distribu­
tor 114 can also assign values of the coefficient of impact 134 
in accordance with a pre-determined distribution of values of 
the coefficient of impact 134 (shown in FIG. 6), such as a 
sinusoidal, normal, logarithmic distribution curve, or a ran­
dom distribution function. In many cases, the sum or integral 
of coefficient of impact 134 or c,.d.n for a specific input signal 
102 related to each synapse 118 will have a value of 1 (one). 

55 ture of the p-net 100, the set of indexes may include the input 
index "i" configured to identifY the corrective weight 112 
corresponding to the input 102. The set of indexes may also 
include the interval index "d" configured to specify the 
selected interval for the respective corrective weight 112, and 

60 the neuron index "n" configured to specify the corrective 
weight 112 corresponding to the specific neuron 116 as 
"W ". The set of indexes may additionally include the 

'•d•n f . h access index "a" configured to tally a number o times t e 
respective corrective weight 112 is accessed by the input 

[
1
] 65 signal104 during training of the p-net 100. Accordingly, the 

present status of each corrective weight may adopt the 
nomenclature "W,.d.n.a ·· 

In the simplest case, the corrective weight 112 that corre­
sponds most closely to the input signal value may be assigned 
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After frame 204, the method proceeds to frame 206, in 
which the method includes selecting, via the distributor 114, 
in correlation with the input value, one or more corrective 
weights 112 from the plurality of corrective weights located 
on the synapse 118 connected to the subject input 102. As 
described above, each corrective weight 112 is defined by its 
respective weight value. In frame 206 the method may addi­
tionally include assigning, via the distributor 114, the plural-

12 
such a case, the modification of the respective corrective 
weights 112 may include multiplying each corrective weight 
112 used to generate the neuron sum 120 by the generated 
deviation coefficient. 

After frame 212, the method proceeds to frame 214. In 
frame 214 the method includes modifYing, via the weight 
correction calculator 122, respective corrective weight values 
using the determined deviation 128. The modified corrective 
weight values can subsequently be added or snnnned up and ity of coefficients of impact 134 to the plurality of corrective 

weights 112. In frame 206 the method may also include 
assigning each coefficient of impact 134 to one of the plural­

10 then used to determine a new neuron sum 120. The summed 

ity of corrective weights 112 in a predetermined proportion to 
generate the neuron sum 120. Also, in frame 206 the method 
may include adding up, via the neuron 116, a product of the 
corrective weight 112 and the assigned coefficient of impact 15 

134 for all the synapses 118 connected thereto. Additionally, 
in frame 206 the method may include applying, via the weight 
correction calculator 122, a portion of the determined differ­
ence to each corrective weight 112 used to generate the neu­
ron sum 120 according to the proportion established by the 20 

respective coefficient of impact 134. 
As described above with respect to the structure of the 

p-net 100, the plurality of coefficients of impact 134 may be 
defined by an impact distribution function 136. In such a case, 
the method may additionally include receiving the input value 25 

into the value range 138 divided into intervals "d" according 
to the interval distribution function 140, such that the input 
value is received within a respective interval, and each cor­
rective weight 112 corresponds to one of the intervals. Also, 
the method may include using, via the distributor 114, the 30 

received input value to select the respective interval "d" and 
assign the plurality of coefficients of impact 134 to the cor­
rective weight 112 corresponding to the selected respective 
interval "d" and to at least one corrective weight correspond­
ing to an interval adjacent to the selected respective interval 35 

"d". As described above with respect to the structure of the 
p-net 100, corrective weights 112 corresponding to an inter­
val adjacent to the selected respective interval "d" may be 
identified, for example, as W, d+l n or W, d-l n· 

Following frame 206, the ~ethod adv~n~es to frame 208. 40 

In frame 208, the method includes adding up the weight 
values of the selected corrective weights 112 by the specific 
neuron 116 connected with the input 102 via the synapse 118 
to generate the neuron sum 120. As described above with 
respect to the structure of the p-net 100, each neuron 116 45 

includes at least one output 117. After frame 208, the method 
proceeds to frame 210, in which the method includes receiv­
ing, via the weight correction calculator 122, the desired 
output signal 124 having the signal value. Following frame 
210, the method advances to frame 212 in which the method 50 

includes determining, via the weight correction calculator 
122, the deviation 128 of the neuron sum 120 from the value 
of the desired output signal124. 

As disclosed above in the description of the p-net 100, the 
determination of the deviation 128 of the neuron sum 120 55 

modified corrective weight values can then serve to minimize 
the deviation of the neuron sum 120 from the value of the 
desired output signal 124 and thereby train the p-net 100. 
Following frame 214, method 200 can include returning to 
frame 202 to perform additional training epochs nntil the 
deviation of the neuron sum 120 from the value of the desired 
output signal 124 is sufficiently minimized. In other words, 
additional training epochs can be performed to converge the 
neuron sum 120 on the desired output signal124 to within the 
predetermined deviation or error value, such that the p-net 
100 can be considered trained and ready for operation with 
new images. 

Generally, the input images 106 need to be prepared for 
training of the p-net 100. Preparation of the p-net 100 for 
training generally begins with formation of a set of training 
images, including the input images 106 and, in the majority of 
cases, desired output images 126 corresponding to the subject 
input images. The input images 106 (shown in FIG. 2) defined 
by the input signals Iu I2 ... Im fortrainingofthep-netlOO are 
selected in accordance with tasks that the p-net is assigned to 
handle, for example recognition of human images or other 
objects, recognition of certain activities, clustering or data 
classification, analysis of statistical data, pattern recognition, 
forecasting, or controlling certain processes. Accordingly, the 
input images 106 can be presented in any format suitable for 
introduction into a computer, for example, using formats 
jpeg, gif, or pptx, in the form of tables, charts, diagrams and 
graphics, various document formats, or a set of symbols. 

Preparation for training of the p-net 100 may also include 
conversion of the selected input images 106 for their unifica­
tion that is convenient for the processing of the subject images 
by the p-net 100, for example, transforming all images to a 
format having the same number of signals, or, in the case of 
pictures, same number of pixels. Color images could be, for 
example, presented as a combination of three basic colors. 
Image conversion could also include modification of charac-
teristics, for example, shifting an image in space, changing 
visual characteristics of the image, such as resolution, bright­
ness, contrast, colors, viewpoint, perspective, focal length 
and focal point, as well as adding symbols, numbers, or notes. 

After selection of the number of intervals, a specific input 
image may be converted into an input image in interval for­
mat, that is, real signal values may be recorded as numbers of 
intervals to which the subject respective signals belong. This 
procedure can be carried out in each training epoch for the 
given image. However, the image may also be formed once as 
a set of interval numbers. For example, in FIG. 7 the initial 
image is presented as a picture, while in the table "Image in 
digital format" the same image is presented in the form of 

from the desired output signal value may include determining 
the mathematical difference therebetween. Additionally, the 
modification of the respective corrective weights 112 may 
include apportioning the mathematical difference to each 
corrective weight used to generate the neuron sum 120. Alter­
natively, the apportionment of the mathematical difference 
may include dividing the determined difference equally 
between each corrective weight 112 used to generate the 
neuron sum 120. In a yet separate embodiment, the determi­
nation of the deviation 128 may also include dividing the 
value of the desired output signal124 by the neuron sum 120 
to thereby generate the deviation coefficient. Furthermore, in 

60 digital codes, and in the table "Image in interval format" then 
image is presented as a set of interval numbers, where a 
separate interval is assigned for each 10 values of digital 
codes. 

The described structure of the p-net 100 and the training 
65 algorithm or method 200 as described permit continued or 

iterative training of the p-net, thus there is no requirement to 
form a complete set of training input images 106 at the start of 
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or from specific images, for example, for a more effective 
recognition ofhuman faces in photos containing a large num­
ber of different individuals or objects. On the other hand, 
values of synaptic weights 108 that are greater than 0 (zero) 
can be used to denote signal attenuation, which can be used to 
reduce the number of required calculations and increase 
operational speed of the p-net 100. Generally, the greater the 
value of the synaptic weight, the more attenuated is the signal 
transmitted to the corresponding neuron. If all synaptic 

the training process. It is possible to form a relatively small 
starting set of training images, and such a starting set could be 
expanded as necessary. The input images 106 may be divided 
into distinct categories, for example, a set of pictures of one 
person, a set of photos of cats, or a set of photographs of cars, 
such that each category corresponds to a single output image, 
such a person's name or a specific label. Desired output 
images 126 represent a field or table of digital, where each 
point corresponds to a specific numeric value from -oo to +oo, 

or analog values. Each point of the desired output image 126 
may correspond to the output of one of the neurons of the 
p-net 100. Desired output images 126 can be encoded with 
digital or analog codes of images, tables, text, formulas, sets 

10 weights 108 corresponding to all inputs are equal and all 
neurons are equally connected with all inputs, the neural 
network will become universal and will be most effective for 
common tasks, such as when very little is known about the 

of symbols, such as barcodes, or sounds. 
In the simplest case, each input image 106 may correspond 15 

to an output image, encoding the subject input image. One of 
the points of such output image may be assigned a maximum 
possible value, for example 100%, whereas all other points 
may be assigned a minimum possible value, for example, 
zero. In such a case, following training, probabilistic recog- 20 

nition of various images in the form of a percentage of simi­
larity with training images will be enabled. FIG. 8 shows an 
example of how the p-net 100 trained for recognition of two 
images, a square and a circle, may recognize a picture that 
contains some features of each figure being expressed in 25 

percentages, with the sum not necessarily equal 100%. Such 
a process of pattern recognition by defining the percentage of 
similarity between different images used for training can be 
used to classifY specific images. 

nature of the images in advance. However, such a structure 
will generally increase the number of required calculations 
during training and operation. 

FIG. 9 shows an embodiment of the p-net 100 in which the 
relationship between an input and respective neurons is 
reduced in accordance with statistical normal distribution. 
Uneven distribution of synaptic weights 108 can result in the 
entire input signal being communicated to a target or "cen­
tral" neuron for the given input, thus assigning a value of zero 
to the subject synaptic weight. Additionally, nneven distribu­
tion of synaptic weights can result in other neurons receiving 
reduced input signal values, for example, using normal, log­
normal, sinusoidal, or other distribution. Values of the synap-
tic weights 108 for the neurons 116 receiving reduced input 
signal values can increase along with the increase of their 
distance from the "central" neuron. In such a case, the number 
of calculations can be reduced and operation of the p-net can 
speed up. Such networks, which are a combination of known 
fully connected and non-fully connected neural networks 
may be the exceedingly effective for analysis of images with 
strong internal patterns, for example, human faces or con-

To improve the accuracy and exclude errors, coding can be 30 

accomplished using a set of several neural outputs rather than 
one output (see below). In the simplest case, output images 
may be prepared in advance of training However, it is also 
possible to have the output images formed by the p-net 100 
during training. 35 secutive frames of a movie film. 

In the p-net 100, there is also a possibility of inverting the 
input and output images. In other words, input images 106 can 
be in the form of a field or table of digital or analog values, 
where each point corresponds to one input of the p-net, while 
output images can be presented in any format suitable for 40 

introduction into the computer, for example using formats 
jpeg, gif, pptx, in the form of tables, charts, diagrams and 
graphics, various document formats, or a set of symbols. The 
resultant p-net 100 can be quite suitable for archiving sys­
tems, as well as an associative search of images, musical 45 

expressions, equations, or data sets. 
Following preparation of the input images 106, typically 

the p-net 100 needs to be formed and/or parameters of an 
existing p-net must be set for handling given task(s). Forma­
tion of the p-net 100 may include the following designations: 50 

dimensions of the p-net 100, as defined by the number of 
inputs and outputs; 

synaptic weights 108 for all inputs; 
number of corrective weights 112; 
distribution of coefficients of corrective weight impact 55 

(C, dn) for different values of input signals 104; and 
desir~d accuracy of training 
The number of inputs is determined based on the sizes of 

input images 106. For example, a number of pixels can be 
used for pictures, while the selected number of outputs can 60 

depend on the size of desired output images 126. In some 
cases, the selected number of outputs may depend on the 
number of categories of training images. 

Values of individual synaptic weights 108 can be in the 
range of -oo to +oo. Values of synaptic weights 108 that are 65 

less than 0 (zero) can denote signal amplification, which can 
be used to enhance the impact of signals from specific inputs, 

FIG. 9 shows an embodiment of the p-net 100 that is 
effective for recognition oflocal patterns. In order to improve 
the identification of common patterns, 10-20% of strong con­
nections, where the values of the synaptic weights 108 are 
small or zero, can be distributed throughout the entire p-net 
100, in a deterministic, such as in the form of a grid, or a 
random approach. The actual formation of the p-net 100 
intended for handling a particular task is performed using a 
program, for example, written in an object-oriented program­
ming language, that generates main elements of the p-net, 
such as synapses, synaptic weights, distributors, corrective 
weights, neurons, etc., as software objects. Such a program 
can assign relationships between the noted objects and algo­
rithms specifYing their actions. In particular, synaptic and 
corrective weights can be formed in the beginning of forma­
tion of the p-net 100, along with setting their initial values. 
The p-net 100 can be fully formed before the start of its 
training, and be modified or added-on at a later frame, as 
necessary, for example, when information capacity of the 
network becomes exhausted, or in case of a fatal error. 
Completion of the p-net 100 is also possible while training 
continues. 

If the p-net 100 is formed in advance, the number of 
selected corrective weights on a particular synapse may be 
equal to the number of intervals within the range of input 
signals. Additionally, corrective weights may be generated 
after the formation of the p-net 100, as signals in response to 
appearance of individual intervals. Similar to the classical 
neural network 10, selection of parameters and settings of the 
p-net 100 is provided with a series of targeted experiments. 
Such experiments can include (1) formation of the p-net with 
the same synaptic weights 108 at all inputs, and (2) assess-



US 9,390,373 B2 
15 

ment of input signal values for the selected images and initial 
selection of the number of intervals. For example, for recog­
nition of binary (one-color) images, it may be sufficient to 
have only 2 intervals; for qualitative recognition of 8 bit 
images, up to 256 intervals can be used; approximation of 
complex statistical dependencies may require dozens or even 
hundreds of intervals; for large databases, the number of 
intervals could be in the thousands. 

In the process of training the p-net 100, the values of input 
signals may be rounded as they are distributed between the 10 

specific intervals. Thus, accuracy of input signals greater than 
the width of the range divided by the number of intervals may 
not be required. For example, if the input value range is set for 
100 units and the number of intervals is 10, the accuracy 
better than ±5 will not be required. Such experiments can also 15 

include (3) selection of uniform distribution of intervals 
throughout the entire range of values of the input signals and 
the simplest distribution for coefficients of corrective weight 
impact C,,d,n can be set equal to 1 for corrective weight cor­
responding to the interval for the particular input signal, while 20 

the corrective weight impact for all remaining corrective 
weights can be set to 0 (zero). Such experiments can addi­
tionally include (4) training p-net 100 with one, more, or all 
prepared training images with pre-determined accuracy. 

Training time of the p-net 100 for predetermined accuracy 25 

can be established by experimentation. If accuracy and train­
ing time of the p-net 100 are satisfactory, selected settings 
could be either maintained or changed, while a search is 
continued for a more effective variant. If the required accu­
racy is not achieved, for optimization purposes influence of 30 

specific modification may be evaluated, which can be per­
formed either one at the time, or in groups. Such evaluation of 
modifications may include changing, either increasing or 
reducing, the number of intervals; changing the type of dis­
tribution of the coefficients of corrective weight impact 35 

(C,,d,n), testing variants with non-uniform distribution of 
intervals, such as using normal, power, logarithmic, or log­
normal distribution; and changing values of synaptic weights 
108, for example their transition to non-uniform distribution. 

If the required training time for an accurate result is 40 

deemed excessive, training with an increased number of inter­
vals, can be evaluated for its effect on training time. If, as a 
result, the training time was reduced, the increase in the 
number of intervals can be repeated until desired training time 
is obtained without a loss of required accuracy. If the training 45 

time grows with increasing number of intervals instead of 
being reduced, additional training can be performed with 
reduced number of intervals. If the reduced number of inter­
vals results in reduced training time, the number of intervals 
could be further reduced until desired training time is 50 

obtained. 
Formation of the p-net 100 settings can be via training with 

pre-determined training time and experimental determination 
of training accuracy. Parameters could be improved via 
experimental changes similar to those described above. 55 

Actual practice with various p-nets has shown that the proce­
dure of setting selection is generally straight-forward and not 
time-consuming. 

Actual training of the p-net 100 as part of the method 200, 
shown in FIG. 23, starts with feeding the input image signals 60 

I v I2 ... Im to the network input devices 102, from where they 
are transmitted to synapses 118, pass through the synaptic 
weight 108 and enter the distributor (or a group of distribu­
tors) 114. Based on the input signal value, the distributor 114 
sets the number of the interval "d" that the given input signal 65 

104 corresponds to, and assigns coefficients of corrective 
weight impact C,,d,n for all the corrective weights 112 of the 

16 
weight correction blocks 110 of all the synapses 118 con­
nected with the respective input 102. For example, if the 
interval "d" may be set to 3 for the first input, for all weights 
wl,3,m cl,3,n =1 is set to 1, while for all other weights withi#l 
and d#3, C,,d,n can be set to 0 (zero). 

For each neuron 116, identified as "n" in the relationship 
below, neuron output sums ~1, ~2 ... ~n are formed by 
multiplying each corrective weight 112, identified as W,,d,n in 
the relationship below, by a corresponding coefficient of cor­
rective weight impact C,,d,n for all synapses 118 contributing 
into the particular neuron and by adding all the obtained 
values: 

[2] 

Multiplication of W,,d,nxC,,d,n can be performed by various 
devices, for example by distributors 114, devices with stored 
weights or directly by neurons 116. The sums are transferred 
via neuron output 117 to the weight correction calculator 122. 
The desired output signals 0 1 , 0 2 ... On describing the 
desired output image 126 are also fed to the calculator 122. 

As discussed above, the weight correction calculator 122 is 
a computation device for calculating the modified value for 
corrective weights by comparison of the neuron output sums 
D, ~2 ... ~n with desired output signals Ov 0 2 ... On. FIG. 
11 shows a set of corrective weights W,,d,l, contributing into 
the neuron output sum ~1, which are multiplied by corre­
sponding coefficient of corrective weight impact C,,d,v and 
these products are subsequently added by the neuron output 
sum ~1: 

Ll = Wl,O,l xC1,0,1.+ W1,1,1xC 1,1,1.+ W1,2,1xC 1,2,1-+ [3] 

As the training commences, i.e., during the first epoch, 
corrective weights W,,d,l do not correspond to the input image 
106 used for training, thus, neuron output sums ~1 are not 
equal to the corresponding desired output image 126. Based 
on the initial corrective weights W,,d,1 , the weight correction 
system calculates the correction value ll.l, which is used for 
changing all the corrective weights contributing to the neuron 
output sum ~1 (W,,d,J The p-net 100 permits various options 
or variants for its formation and utilization of collective cor­
rective signals for all corrective weights contributing to a 
specified neuron 116. 

Below are two exemplary and non -limiting variants for the 
formation and utilization of the collective corrective signals. 
Variant !-formation and utilization of corrective signals 
based on the difference between desired output signals and 
obtained output sums as follows: 

calculation of the equal correction value ll.n for all correc­
tive weights contributing into the neuron "n" according 
to the equation: 

t-.n~(On-:E.n/S 

Where: 

[4], 

On --desirable output signal corresponding to the neuron 
output sum ~n; 

S-number of synapses connected to the neuron "n". 
modification of all corrective weights W,,d,n contributing 

into the neuron "n" according to the equation: 

W,,d,n modified~ W,,d,n +11./Ci,d,n [5], 

Variant 2-formation and utilization of corrective signals 
based on ratio of desired output signals versus obtained out­
put sums as follows: 

calculation of the equal correction value ll.n for all correc­
tive weights contributing into the neuron "n" according 
to the equation: 

[6], 
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modification of all corrective weights W, d n contributing 
into the neuron "n" according to the eq~~tion: 

wi,d,m modified~ W,,d,n,x!ln [7], 

Modification of corrective weights W, d n by any available 
variant is intended to reduce the training 'e~or for each neuron 
116 by converging its output sum ~n on the value of the 
desired output signal. In such a way, the training error for a 
given image can be reduced until such becomes equal, or 
close to zero. 

An example of modification of corrective weights W, d n 

during training is shown in FIG. 11. The values of correcti~e 
weights W, dn are set before the training starts in the form of 
random weight distribution with the weight values being set 

18 
images 126 created as described can be used, for example, for 
creating different classifications, statistical analysis, images 
selection based on criteria formed as a result of clustering. 
Also, the desired output images 126 generated by the p-net 
100 can be used as input images for another or additional 
p-net, which can also be formed along the lines described for 
the subjectp-net 100. Thus formed, the desired output images 
126 may be used for a subsequent layer of a multi-layer p-net. 

Classical neural network 10 training is generally provided 
10 via a supervised training method that is based on preliminary 

prepared pairs of an input image and a desired output image. 
The same general method is also used for training of the p-net 
100, however, the increased training speed of the p-net 100 
also allows for training with an external trainer. The role of the 

15 external trainer can be performed, for example, by an indi­
vidual or by a computer program. Acting as an external 
trainer, the individual may be involved in performing a physi­
cal task or operate in a gaming environment. The p-net 100 
receives input signals in the form of data regarding a particu-

to 0±10% from the correction weight range and reach final 
weight distribution after training The described calculation of 
collective signals is conducted for all neurons 116 in the p-net 
100. The described training procedure for one training image 
can be repeated for all other training images. Such procedure 
can lead to appearance of training errors for some of the 
previously trained images, as some corrective weights W, d n 

may participate in several images. Accordingly, training w'ith 
another image may partially disrupt the distribution of cor­
rective weights W, dn formed for the previous images. How­
ever, due to the fa~t· that each synapse 118 includes a set of 25 

corrective weights W,dm training with new images while 
possibly increasing train'ing error, does not delete the images, 
for which the p-net 100 was previously trained. Moreover, the 
more synapses 118 contribute to each neuron 116 and the 
greater the number of corrective weights W, d n at each syn­
apse, the less training for a specific image affe~ts the training 
for other images. 

20 lar situation and changes thereto. The signals reflecting 
actions of the trainer can be introduced as desired output 
images 126 and permit the p-net 100 to be trained according 
to the basic algorithm. In such a way, modeling of various 
processes can be generated by the p-net 100 in real-time. 

For example, the p-net 100 can be trained to drive a vehicle 
by receiving information regarding road conditions and 
actions of the driver. Through modeling a large variety of 
critical situations, the same p-net 100 can be trained by many 
different drivers and accumulate more driving skills than is 

30 generally possible by any single driver. The p-net 100 is 
capable of evaluating a specific road condition in 0.1 seconds 
or faster and amassing substantial "driving experience" that 
can enhance traffic safety in a variety of situations. The p-net 
100 can also be trained to cooperate with a computer, for 

Each training epoch generally ends with the substantial 
convergence of the total training error and/or local training 
errors for all training images. Errors can be evaluated using 
known statistical methods, such as, for example, the Mean 
Squared Error (MSE), the Mean Absolute Error (MAE), or 
the Standard Error Mean (SEM). If the total error or some of 
the local errors are too high, additional training epoch can be 
conducted until the error is reduced to less than a predeter­
mined error value. Earlier described process of image recog­
nition with defining the percentage of similarity between 
different images used for training (shown in FIG. 8) is by 
itself a process of classification of images along previously 
defined categories. 

For clustering, i.e., dividing images into natural classes or 
groups that were not previously specified, the basic training 
algorithm of the method 200 can be modified with the modi­
fied Self-Organizing Maps (SOM) approach. The desired 
output image 126 corresponding to a given input image can be 
formed directly in the process of training the p-net 100 based 
on a set of winning neurons with a maximum value of the 
output neuron sums 120. FIG. 22 shows how the use of the 
basic algorithm of the method 200 can generate a primary set 
of the output neuron sums, where the set further is converted 
such that several greater sums retain their value, or increase, 
while all other sums are considered equal to zero. This trans­
formed set of output neuron sums can be accepted as the 
desired output image 126. 

35 example, with a chess-playing machine. The ability of the 
p-net 100 to easily shift from training mode to the recognition 
mode and vice versa allows for realization of a "learn from 
mistakes" mode, when the p-net 100 is trained by an external 
trainer. In such a case, the partially trained p-net 100 can 

40 generate its own actions, for example, to control a technologi­
cal process. The trainer could control the actions of the p-net 
100 and correct those actions when necessary. Thus, addi­
tional training of the p-net 100 could be provided. 

Informational capacity of the p-net 100 is very large, but is 
45 not unlimited. With the set dimensions, such as the number of 

inputs, outputs, and intervals, of the p-net 100, and with an 
increase in the number of images that the p-net is trained with, 
after a certain number of images, the number and magnitude 
of training errors can also increase. When such an increase in 

50 error generation is detected, the number and/or magnitude of 
errors can be reduced by increasing the size of p-net 100, 
since the p-net permits increasing the number of neurons 116 
and/or the number of the signal intervals "d" across the p-net 
or in its components between training epochs. P-net 100 

55 expansion can be provided by adding new neurons 116, add­
ing new inputs 102 and synapses 118, changing distribution 
of the coefficients of corrective weight impact C, dm and 
dividing existing intervals "d". · · 

In most cases p-net 100 will be trained to ensure its ability 
60 to recognize images, patterns, and correlations inherent to the 

image, or to a sets of images. The recognition process in the 
simplest case repeats the first steps of the training process 
according to the basic algorithm disclosed as part of the 

Formed as described above, the set of desired output 
images 126 includes clusters or groups. As such, the set of 
desired output images 126 allows for clustering of linearly 
inseparable images, which is distinct from the classical net­
work 10. FIG. 13 shows how the described approach can 
assist with clustering a complex hypothetical image "cat- 65 

car", where different features of the image are assigned to 
different clusters-cats and cars. A set of desired output 

method 200. In particular: 
direct recognition starts with formatting of the image 

according to the same rules that are used to format 
images for training; 
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the image is sent to the inputs of the trained p-net 100, 
distributors assign the corrective weights W, d n corre­
sponding to the values of input signals that' ~ere set 
during training, and the neurons generate the respective 
neuron sums, as shown in FIG, 8; 

if the resulting output sums representing the output image 
126 fully complies with one of the images that the p-net 
100 is being trained with, there is an exact recognition of 
the object; and 

if the output image 126 partially complies with several 10 

images the p-net 100 is being trained with, the result 
shows the matching rate with different images as a per­
centage, FIG, 13 demonstrates that during recognition of 
the complex image that is made based on a combination 
of images of a cat and a vehicle, the output image 126 15 

represents the given image combination and indicates 
the percentage of each initial image's contribution into 
the combination, 

For example, if several pictures of a specific person were 
used for training, the recognized image may correspond 90% 20 

to the first picture, 60% to the second picture, and 35% to the 
third picture, It may be that the recognized image corresponds 
with a certain probability to the pictures of other people or 
even of animals, which means that there is some resemblance 
between the pictures, However, the probability of such resem- 25 

blance is likely to be lower, Based on such probabilities, the 
reliability of recognition can be determined, for example, 
based on Bayes' theorem, 

With the p-net 100 it is also possible to implement multi­
stage recognition that combines the advantages of algorith- 30 

mic and neural network recognition methods, Such multi­
stage recognition can include: 

initial recognition of an image by a pre-trained network via 
using not all, but only 1%-10% of inputs, which are 
herein designated as "basic inputs", Such a portion of the 35 

inputs can be distributed within the p-net 100 either 
uniformly, randomly, or by any other distribution func­
tion, For example, the recognition of a person in the 
photograph that includes a plurality of other objects; 

selecting the most informative objects or parts of objects 40 

for further detailed recognition, Such selection can be 
provided according to structures of specific objects that 
are pre-set in memory, as in the algorithmic method, or 
according to a gradient of colors, brightness, and/or 
depth of the image, For example, in recognition of por- 45 

traits the following recognition zones can be selected: 
eyes, comers of the mouth, nose shape, as well as certain 
specific features, such as tattoos, vehicle plate numbers, 
or house numbers can also be selected and recognized 
using a similar approach; and 50 

detailed recognition of selected images, if necessary, is 
also possible, 

Formation of a computer emulation of the p-net 100 and its 
training can be provided based of the above description by 
using any programming language, For example, an object- 55 

oriented programming can be used, wherein the synaptic 
weights 108, corrective weights 112, distributors 114, and 
neurons 116 represent programming objects or classes of 
objects, relations are established between object classes via 
links or messages, and algorithms of interaction are set 60 

between objects and between object classes, 
Formation and training of the p-net 100 software emulation 

can include the following: 
L Preparation for the formation and training of the p-net 100, 
in particular: 65 

conversion of sets of training input images into digital form 
in accordance with a given task; 

20 
analysis of the resulting digital images, including selection 

of parameters of the input signals to be used for training, 
for example, frequencies, magnitudes, phases, or coor­
dinates; and 

setting a range for the training signals, a number of inter­
vals within the subject range, and a distribution of coef­
ficients of corrective weight impact C, d n' 

2, Formation of the p-net software emulati~n', including: 
formation of a set of inputs to the p-net 100, For example, 

the number of inputs may be equal to the number of 
signals in the training input image; 

formation of a set of neurons, where each neuron repre­
sents an adding device; 

formation of a set of synapses with synaptic weights, where 
each synapse is connected to one p-net input and one 
neuron; 

formation of weight correction blocks in each synapse, 
where the weight correction blocks include distributors 
and corrective weights, and where each corrective 
weight has the following characteristics: 
Corrective weight input index (i); 
Corrective weight neuron index (n); 
Corrective weight interval index (d); and 
Corrective weight initial value (W, d n), 

designating a correlation between int~~als and corrective 
weights, 

3, Training each neuron with one input image, including: 
designating coefficients of corrective weight impact C, d n' 

including: ' ' 
determining an interval corresponding to the input sig­

nal of the training input image received by each input; 
and 

designating magnitudes of the coefficients of corrective 
weight impact C,,d,n to all corrective weights for all 
synapses, 

calculating neuron output sum (Ln) for each neuron "n" by 
adding corrective weight value W, d n of all synaptic 
weights contributing to the neuron' ~ultiplied by the 
corresponding coefficients of corrective weight impact 
ci,d,n: 

Ln ~Li,d,n W,,d,nxCi,d,n 

calculating the deviation or training error (T n) via subtrac­
tion of the neuron output sum ~n from the corresponding 
desired output signal On: 

TnQn-Ln; 

calculating the equal correction value ( ll.n) for all corrective 
weights contributing to the neuron "n" via dividing the 
training error by the number of synapses "S" connected 
to the neuron "n": 

Jl,n~Tn/S 

modifying all corrective weights W, d n contributing to the 
respective neuron by adding to e~~h corrective weight 
the correction value An divided by the corresponding 
coefficients of corrective weight impact C,,d,n: 

W,,d,n modified~ W,,n,d+ n!C,,d,n' 

Another method of calculating the equal correction value (ll.n) 
and modifYing the corrective weights W, d n for all corrective 
weight contributing to the neuron "n" c~ include the follow­
ing: 

dividing the signal of desired output image On by a neuron 
output sum ~n: 

!J.n=O)~n 
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modifying the corrective weights W, d n contributing to the 
neuron by multiplying the corre'ctive weights by the 
correction value ll.n: 

4. Training the p-net 100 using all training images, including: 
repeating the process described above for all selected train­

ing images that are included in one training epoch; and 

22 
During the training process the cycles can be formed, where: 

neuron output sum that is equal to zero is formed before the 
cycle starts; 

all synapses contributing to the given NeuronUnit are 
reviewed. For each synapse 118: 
Based on the input signal1 02, the distributor forms a set 

of coefficients of corrective weight impact c,.d.n; 

determining an error or errors of the specific training 
10 

epoch, comparing those error(s) with a predetermined 
acceptable error level, and repeating training epochs 
until the training errors become less than the predeter­
mined acceptable error level. 

All weights W,.n.d of the said synapse 118 are reviewed, 
and for each weight: 
The value of weight W,.n.d is multiplied by the corre­

sponding coefficient of corrective weight impact 

ci,d,n; 

The result of multiplication is added to the forming 

An actual example of software emulation of the p-net 100 15 

using object-oriented programming is described below and 
shown in FIGS. 14-21. 

neuron output sum; 
correction value ll.n is calculated; 
correction value ll.n is divided by the coefficient of correc­

tive weight impact C,.d.n' i.e., ll.)C,.d.n; and Formation of a Neuron Unit object class can include forma­
tion of: 

set of objects of the Synapse class; 
neuron 116 presenting a variable, wherein adding is per­

formed during training; and 
calculator 122 presenting a variable, wherein the value of 

desired neuron sum 120 is stored and calculation of 

20 

all synapses 118 contributing to the given Neuron Unit are 
reviewed. For each synapse 118, all weights W,.n.dofthe 
subject synapse are reviewed, and for each weight its 
value is modified to the corresponding correction value 
!J.n. 

correction values An is performed during the training 25 

The previously noted possibility of additional training of 
the p-net 100 allows a combination of training with the rec­
ognition of the image that enables the training process to be 
sped up and its accuracy to be improved. When training the 
p-net 100 on a set of sequentially changing images, such as 
training on consecutive frames of the film that are slightly 

process. 
Class Neuron Unit provides p-net 100 training can include: 

formation of neuron sums 120; 
setting desired sums; 
calculation of correction value ll.n; and 
adding the calculated correction value ll.n to the corrective 

weights w, n d· 

Formation ofth~ ~bject class Synapse can include: 
set of corrective weights W, n d; and 
pointer indicating the input ~~nnected to synapse 118. 

Class Synapse can perform the following functions: 
initialization of corrective weights W, n d; 
multiplying the weights w, n d by th~ ~oefficients c, d n; 

and · · · · 
correction of weights W, n d· 

Formation of the object cia~; InputSignal can include: 
set of indexes on synapses 118 connected to a given input 

102; 
variable that includes the value of the input signal104; 
values of possible minimum and maximum input signal; 
number of intervals "d"; and 
interval length. 

Class InputSignal can provide the following functions: 
formation of the p-net 100 structure, including: 

30 different from each other, additional training can include: 
training with the first image; 

35 

40 

recognition of the next image and identifying a percentage 
of similarity between the new image and the image the 
network was initially trained with. Additional training is 
not required if the recognition error is less than its pre­
determined value; and 

if the recognition error exceeds the predetermined value, 
additional training is provided. 

Training of the p-net 100 by the above basic training algo-
rithm is effective for solving problems of image recognition, 
but does not exclude the loss or corruption of data due to 
overlapping images. Therefore, the use of the p-net 100 for 
memory purposes, though possible, may not be entirely reli-

45 able. The present embodiment describes training of the p-net 
100 that provides protection against loss or corruption of 
information. An additional restriction can be introduced into 
the basic network training algorithm which requires that 

Adding and removal of links between an input 102 and 50 

synapses 118; and 

every corrective weight W,.n.d can be trained only once. After 
the first training cycle, the value of the weight W,.n.d remains 
fixed or constant. This can be achieved by entering an addi­
tiona! access index "a" for each corrective weight, which is 
the above-described index representing the number of 

Setting the number of intervals "d" for synapses 118 of 
a particular input 102. 

setting parameters of minimum and maximum input sig­
nals 104; 

contribution into the operation of p-net 100: 
setting an input signal104; and 
setting coefficients of corrective weight impact C, d n· 

Formation of the object class PNet includes a set of ~bject 
classes: 

NeuronUnit; and 
InputSignal. 

Class PNet provides the following functions: 
setting the number of objects of the InputSignal class; 
setting the number of objects of the Neuron Unit class; and 
group request of functions of the objects Neuron Unit and 

InputSignal. 

55 
accesses to the subject corrective weight W,.n.d during the 
training process. 

As described above, each corrective weight can take on the 
nomenclature of W,.n.d.a' wherein "a" is the number of 
accesses to the subject weight during the training process. In 

60 the simplest case, for the non-modified, i.e., not fixed, 
weights, a=O, while for the weights that have been modified or 
fixed by the described basic algorithm, a= 1. Moreover, while 
applying the basic algorithm, the corrective weights W,.n.d.a 
with the fixed value a=l can be excluded from the weights to 

65 which corrections are being made. 
In such a case, equations [5], [6], and [7] can be trans­

formed as follows: 
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Value Basic algorithm Training algorithm with fixed weights 

Equal correction /l,.n ~(On- Ln)/S [4], /l,.n ~(On- Ln)/So [8], 
value -Variant 1 where S0 - sum Ci d n a of all corrective weights Wi n d a 

contributing to the' s~b]ect neuron and having the inde~ ~ = 0 
Modified W, n dmodified ~ 
corrective weight- wi: n: d + !J.j 

W,, n, d, 0 modified~ W,, n, d, 0 + 1'1/C,, d, n, 0 [9], wherein W,, n, d, 0 

are weights contributing to the subject neuron and having 
Variant 1 C,,d,n [5], the index a= 0, and Ci d n 0 are coefficients of corrective 

weight impact for the ~o:O.~ctive weights contributing to 
subj eel the neuron and having the index a ~ 0 

Modified W, n dmodified ~ 
corrective weight - w,: n: d x /l,.n [7] 
Variant 2 

Wi,n,d, omodified~ Wi,n,d, oX /l,.n [10] 

The above restriction can be partially applied to the cor- 15 
recti on of the previously trained corrective weights W,,n,d,a' 
but only to the weights that form the most important images, 
For example, within the training on a set of portraits of a 
single person, one specific image can be declared primary and 

replacement of corrective weights W,,n,d,a either with zero 
or with a random value close to the middle of the range 
of possible values for the subject weight when the index 
"a" is reduced to zero, 

An appropriate order and succession of reduction of the 
index "a" can be experimentally selected to identifY strong 
patterns hidden in the sequence of images, For example, for 
every 100 images introduced into the p-net 100 during train­
ing, there can be a reduction of the index "a" by a count of one, 
until "a" reaches the zero value, In such a case, the value of 

be assigned priority, After training on such a priority image, 20 

all corrective weights W,,n,d,a that are changed in the process 
of training can be fixed, i,e,, where the index a=l, thus des­
ignating the weight as and other images of the same person 
may remain changeable, Such priority may include other 
images, for example those that are used as encryption keys 25 

and/or contain critical numeric data, 

"a" can grow correspondingly with the introduction of new 
images, The competition between growth and reduction of 
"a" can lead to a situation where random changes are gradu­
ally removed from memory, while the corrective weights 
W, n d a that have been used and confirmed many times can be 

The changes to the corrective weights W,,n,d,a may also not 
be completely prohibited, but limited to the growth of the 
index "a", That is, each subsequent use of the weight W,,n,d,a 
can be used to reduce its ability to change, The more often a 
particular corrective weight W,,n,d,a is used, the less the 
weight changes with each access, and thus, during training on 
subsequent images, the previous, stored images are changed 
less and experience reduced corruption, For example, if a=O, 
any change in the weight wi,n,d,a is possible; when a=l the 
possibility of change for the weight can be decreased to ±50% 
of the weight's value; with a=2 the possibility of change can 
be reduced to ±25% of the weight's value, 

After reaching the predetermined number of accesses, as 
signified by the index "a", for example, when a=5, further 
change of the weight W,,n,d,a may be prohibited, Such an 
approach can provide a combination of high intelligence and 
information safety within a single p-net 100, Using the net­
work error calculating mechanism, levels of permissible 
errors can be set such that information with losses within a 
predetermined accuracy range may be saved, wherein the 
accuracy range can be assigned according to a particular task 
In other words, for the p-net 100 operating with visual 
images, the error can be set at the level of that cannot be 
captured by the naked eye, which would provide a significant, 
"factor of' increase in storage capacity, The above can enable 
creation of highly effective storage of visual information, for 
example movies, 

The ability to selectively clean computer memory can be 
valuable for continued high-level functioning of the p-net 
100, Such selective cleaning of memory may be done by 
removing certain images without loss of or corruption of the 
rest of the stored information, Such cleaning can be provided 
as follows: 

identification of all corrective weights W, n d a that partici­
pate in the image formation, for exampl~,' by introducing 
the image to the network or by compiling the list of used 
corrective weights for each image; 

reduction of index "a" for the respective corrective weights 
wi,n,d,a; and 

30 sa~ed: When the p-net 100 is trained on a large number of 
images with similar attributes, for example, of the same sub­
ject or similar environment, the often-used corrective weights 
W, n d a constantly confirm their value and information in 
the's~ ~eas becomes very stable, Furthermore, random noise 

35 will gradually disappear, In other words, the p-net 100 with a 
gradual decrease in the index "a" can serve as an effective 
noise filter, 

The described embodiments of the p-net 100 training with­
out loss of information allow creating a p-net memory with 

40 high capacity and reliability, Such memory can be used as a 
high-speed computer memory of large capacity providing 
greater speed than even the "cash memory" system, but will 
not increase computer cost and complexity as is typical with 
the "cash memory" system, According to published data, in 

45 general, while recording a movie with neural networks, 
memory can be compressed tens or hundreds of times without 
significant loss of recording quality, In other words, a neural 
network is able to operate as a very effective archiving pro­
gram, Combining this ability of neural networks with the 

50 high-speed training ability of the p-net 100 may permit a 
creation of high-speed data transmission system, a memory 
with high storage capacity, and high-speed decryption pro­
gram multimedia files, i,e,, a codex, 

Due to the fact that in the p-net 100 data is stored as a set of 
55 corrective weights W, n d a' which is a type of code recording, 

decoding or unauthori~~d access to the p-net via existing 
methods and without the use of an identical network and key 
is unlikely, Thus, p-net 100 can offer a considerable degree of 
data protection, Also, unlike conventional computer memory, 

60 damage to individual storage elements of the p-net 100 pre­
sents an insignificant detrimental effect, since other elements 
significantly compensate lost functions, In the image recog­
nition process, inherent patterns of the image being used are 
practically not distorted as a result of damage to one or more 

65 elements, The above can dramatically improve the reliability 
of computers and allow using certain memory blocks, which 
under normal conditions would be considered defective, In 
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addition, this type of memory is less vulnerable to hacker 
attacks due to the absence of permanent address( s) for critical 
bytes in the p-net 100, making it impervious to attack of such 
a system by a variety of computer viruses. 

The previously-noted process of image recognition with 
determination of the percentage of similarity between differ­
ent images used in training can also be employed as a process 
of image classification according to the previously defined 
categories, as noted above. For clustering, which is a division 
of the images into not predefined natural classes or groups, 10 

the basic training process can be modified. The present 
embodiment can include: 

preparation of a set of input images for training, without 
including prepared output images; 

26 
than one cluster, as shown in FIG. 13. The above can provide 
a significant improvement in accuracy and decrease the num­
ber of clustering errors. 

In the process of p-net 100 training, typical errors being 
subjected to correction are: 

Typical error of neural network 

Errors in selection of training images. 
For example, the set of human images 
includes an image of a cat 
Network errors that were not corrected 
during training. For example, a certain 
image is recognized incorrectly because 
the network cannot divide some features 

Method ofp-net 100 correction 

Erasing the corresponding 
desired output image or 
restriction of its demonstration 
Additional training of the p-net 
100 after the error is detected; 
introduction of additional 
desired output image 

formation and training the network with the formation of 
the neuron output sums as it is done according to the 
basic algorithm; 

15 of the object (the effect of linear insep­
arability). 

selection in the resulting output image of the output with 
maximum output sum, i.e., the winner output, or a group 
of winner outputs, which can be organized similar to 20 

Kohonen network; 
creation of a desired output image, in which the winner 

output or the group of winner outputs receive maximum 
values. At the same time: 

Decline in accuracy due to reaching the 
limit of network information capacity 

P-net 100 expansion 

Error correction is also possible with the help of the above­
described algorithm in training with an outside trainer. 

The detailed description and the drawings or figures are 
supportive and descriptive of the disclosure, but the scope of 
the disclosure is defined solely by the claims. While some of 

The number of selected winner outputs can be predeter­
mined, for example, in a range of 1 to 10, or winner 
outputs can be selected according to the rule "no less 
than N% of the maximum neuron sum", where "N" 
may be, for example, within 90-1 00%; and 

25 the best modes and other embodiments for carrying out the 
claimed disclosure have been described in detail, various 
alternative designs and embodiments exist for practicing the 
disclosure defined in the appended claims. Furthermore, the 

All other outputs can be set equal to zero. 
training according to the basic algorithm with using the 

created desired output image, FIG. 13; and 
repeating all procedures for other images with formation 

for each image of different winners or winner groups. 

30 
embodiments shown in the drawings or the characteristics of 
various embodiments mentioned in the present description 
are not necessarily to be understood as embodiments inde­
pendent of each other. Rather, it is possible that each of the 
characteristics described in one of the examples of an 

The set of desired output images formed in the above 
manner can be used to describe clusters or groups into which 
the plurality of input images can naturally separate. Such a set 

35 embodiment can be combined with one or a plurality of other 
desired characteristics from other embodiments, resulting in 
other embodiments not described in words or by reference to 
the drawings. Accordingly, such other embodiments fall 
within the framework of the scope of the appended claims. 

of desired output images can be used to produce different 
classifications, such as for selection of images according to 
the established criteria and in statistical analysis. The above 40 

can also be used for the aforementioned inversion of input and 
output images. In other words, the desired output images can 
be used as the input images for another, i.e., additional, net­
work, and the output of the additional network can be images 
presented in any form suitable for computer input. 45 

In the p-net 100, after a single cycle of training with the 
described-above algorithm, desired output images can be 
generated with small output sum variation, which can slow 
down the training process and can also reduce its accuracy. To 
improve training of the p-net 100, the initial variation of 50 

points can be artificially increased or extended, so that the 
variation of the magnitude of the points would cover the entire 
range of possible output values, for example -50 to +50, as 
shown in FIG. 21. Such an extension of the initial variation of 
points may be either linear or nonlinear. 55 

A situation may develop where the maximum value of a 
certain output is an outlier or a mistake, for example, a mani­
festation of noise. Such can be manifested by the appearance 
of a maximum value surrounded by a multitude of small 
signals. When winning outputs are selected, the small signal 60 

values can be disregarded through selection the greatest sig­
nals surrounded by other large signals as the winners. For this 
purpose, known statistical techniques of variance reduction 
may be used, such as importance sampling. Such an approach 
can permit removing noise while maintaining basic valuable 65 

patterns. Creation of winner groups enables clustering of 
linearly inseparable images, i.e., images that relate to more 

The invention claimed is: 
1. A neural network comprising: 
a plurality of inputs of the neural network, each input 

configured to receive an input signal having an input 
value; 

a plurality of synapses, wherein each synapse is connected 
to one of the plurality of inputs and includes a plurality 
of corrective weights, wherein each corrective weight is 
defined by a weight value; 

a set of distributors, wherein each distributor is operatively 
connected to one of the plurality of inputs for receiving 
the respective input signal and is configured to select one 
or more corrective weights from the plurality of correc­
tive weights in correlation with the input value; 

a set of neurons, wherein each neuron has at least one 
output and is connected with at least one of the plurality 
of inputs via one of the plurality of synapses, and 
wherein each neuron is configured to add up the weight 
values of the corrective weights selected from each syn­
apse connected to the respective neuron and thereby 
generate a neuron sum; and 

a weight correction calculator configured to receive a 
desired output signal having a value, determine a devia­
tion of the neuron sum from the desired output signal 
value, and modifY respective corrective weight values 
using the determined deviation, such that adding up the 
modified corrective weight values to determine the neu-
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ron sum minimizes the deviation of the neuron sum from 
the desired output signal value to thereby train the neural 
network. 

2. The neural network of claim 1, wherein: 
the determination of the deviation of the neuron sum from 

the desired output signal includes division of the desired 
output signal value by the neuron sum to thereby gener­
ate a deviation coefficient; and 

the modification of the respective corrective weight values 
includes multiplication of each corrective weight used to 10 

generate the neuron sum by the deviation coefficient. 
3. The neural network of claim 1, wherein the deviation of 

the neuron sum from the desired output signal is a mathemati-
cal difference therebetween, and wherein the generation of 

15 
the respective modified corrective weights includes appor­
tioument of the mathematical difference to each corrective 
weight used to generate the neuron sum. 

4. The neural network of claim 3, wherein the apportion­
ment of the mathematical difference includes dividing the 20 

determined difference equally between each corrective 
weight used to generate the neuron sum. 

5. The neural network of claim 3, wherein: 
each distributor is additionally configured to assign a plu­

rality of coefficients of impact to the respective plurality 25 

of corrective weights, such that each coefficient of 
impact is assigned to one of the plurality of corrective 
weights in a predetermined proportion to generate the 
respective neuron sum; 

each neuron is configured to add up a product of the cor- 30 

rective weight and the assigned coefficient of impact for 
all the synapses connected thereto; and 

28 
communicating the input signal to a distributor operatively 

connected to the input; 
selecting, via the distributor, in correlation with the input 

value, one or more corrective weights from a plurality of 
corrective weights, wherein each corrective weight is 
defined by a weight value and is positioned on a synapse 
connected to the input; 

adding up the weight values of the selected corrective 
weights, via a neuron connected with the input via the 
synapse and having at least one output, to generate a 
neuron sum; 

receiving, via a weight correction calculator, a desired 
output signal having a value; 

determining, via the weight correction calculator, a devia­
tion of the neuron sum from the desired output signal 
value; and 

modifying, via the weight correction calculator, respective 
corrective weight values using the determined deviation, 
such that adding up the modified corrective weight val­
ues to determine the neuron sum minimizes the devia-
tion of the neuron sum from the desired output signal 
value to thereby train the neural network. 

10. The method of claim 9, wherein: 
said determining the deviation of the neuron sum from the 

desired output signal value includes dividing the desired 
output signal value by the neuron sum to thereby gener­
ate a deviation coefficient; and 

said modifying the respective corrective weights includes 
multiplying each corrective weight used to generate the 
neuron sum by the deviation coefficient. 

11. The method of claim 9, wherein said determining the 
deviation of the neuron sum from the desired output signal 
value includes determining a mathematical difference ther-

the weight correction calculator is configured to apply a 
portion of the determined difference to each corrective 
weight used to generate the neuron sum according to the 
proportion established by the respective coefficient of 
impact. 

6. The neural network of claim 5, wherein: 

35 ebetween, and wherein said modifying of the respective cor­
rective weights includes apportioning the mathematical dif­
ference to each corrective weight used to generate the neuron 
sum. 

each respective plurality of coefficients of impact is 
defined by an impact distribution function; 

the plurality of input values is received into a value range 
divided into intervals according to an interval distribu­
tion function, such that each input value is received 
within a respective interval, and each corrective weight 
corresponds to one of the intervals; and 

12. The method of claim 11, wherein said apportioning of 
40 the mathematical difference includes dividing the determined 

difference equally between each corrective weight used to 
generate the neuron sum. 

45 

each distributor uses the respective received input value to 
select the respective interval, and to assign the respective 
plurality of coefficients of impact to the corrective 
weight corresponding to the selected respective interval 
and to at least one corrective weight corresponding to an 50 

interval adjacent to the selected respective interval. 
7. The neural network of claim 6, wherein each corrective 

weight is additionally defined by a set of indexes including: 
an input index configured to identify the corrective weight 

corresponding to the input; 
an interval index configured to specifY the selected interval 

for the respective corrective weight; and 
a neuron index configured to specify the corrective weight 

corresponding to the neuron. 

55 

8. The neural network of claim 7, wherein each corrective 60 

weight is further defined by an access index configured to 
tally a number of times the respective corrective weight is 
accessed by the input signal during training of the neural 
network. 

9. A method of training a neural network, comprising: 
receiving, via an input to the neural network, an input 

signal having an input value; 

65 

13. The method of claim 9, further comprising: 
assigning, via the distributor, a plurality of coefficients of 

impact to the plurality of corrective weights, and 
includes assigning each coefficient of impact to one of 
the plurality of corrective weights in a predetermined 
proportion to generate the neuron sum; 

adding up, via the neuron, a product of the corrective 
weight and the assigned coefficient of impact for all the 
synapses connected thereto; and 

applying, via the weight correction calculator, a portion of 
the determined difference to each corrective weight used 
to generate the neuron sum according to the proportion 
established by the respective coefficient of impact. 

14. The method of claim 13, wherein the plurality of coef­
ficients of impact is defined by an impact distribution func­
tion; the method further comprising: 

receiving the input value into a value range divided into 
intervals according to an interval distribution function, 
such that the input value is received within a respective 
interval, and each corrective weight corresponds to one 
of the intervals; and 

using, via the distributor, the received input value to select 
the respective interval, and to assign the plurality of 
coefficients of impact to the corrective weight corre­
sponding to the selected respective interval and to at 
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least one corrective weight corresponding to an interval 
adjacent to the selected respective interval. 

15. The method of claim 14, further comprising addition­
ally defining each corrective weight by a set of indexes, 
wherein the set of indexes includes: 

an input index configured to identify the corrective weight 
corresponding to the input; 

an interval index configured to specifY the selected interval 
for the respective corrective weight; and 

a neuron index configured to specify the corrective weight 10 

corresponding to the neuron. 
16. The method of claim 15, further comprising addition­

ally defining each corrective weight by an access index con­
figured to tally a number of times the respective corrective 
weight is accessed by the input signal during training of the 15 

neural network. 

* * * * * 

30 


