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NEURAL NETWORK AND METHOD OF
NEURAL NETWORK TRAINING

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation-in-part of U.S. Utility
application Ser. No. 15/178,137 filed Jun. 9, 2016, which is
a continuation-in-part of U.S. Utility Bypass application Ser.
No. 14/862,337 filed Sep. 23, 2015, and is a continuation of
International Application Serial No. PCT/US 2015/19236
filed Mar. 6, 2015, which claims the benefit of U.S. Provi-
sional Application Ser. No. 61/949,210 filed Mar. 6, 2014,
and U.S. Provisional Application Ser. No. 62/106,389 filed
Jan. 22, 2015, and also claims the benefit of U.S. Provisional
Application Ser. No. 62/173,163 filed Jun. 9, 2015, the entire
content of which is similarly incorporated by reference.

TECHNICAL FIELD

The disclosure relates to an artificial neural network and
a method of training the same.

BACKGROUND

In machine learning, the term “neural network™ generally
refers to software and/or computer architecture, i.e., the
overall design or structure of a computer system or a
microprocessor, including the hardware and software
required to run it. Artificial neural networks may be a family
of statistical learning algorithms inspired by biological neu-
ral networks, a.k.a., the central nervous systems of animals,
in particular the brain. Artificial neural networks are primar-
ily used to estimate or approximate generally unknown
functions that may depend on a large number of inputs. Such
neural networks have been used for a wide variety of tasks
that are difficult to resolve using ordinary rule-based pro-
gramming, including computer vision and speech recogni-
tion.

Artificial neural networks are generally presented as sys-
tems of “neurons” which may compute values from inputs,
and, as a result of their adaptive nature, are capable of
machine learning, as well as pattern recognition. Each
neuron frequently connects with several inputs through
synapses having synaptic weights.

Neural networks are not programmed as typical software
and hardware, but are trained. Such training is typically
accomplished via analysis of a sufficient number of repre-
sentative examples and by statistical or algorithmic selection
of synaptic weights, so that a given set of input images
corresponds to a given set of output images. A common
criticism of classical neural networks is that significant time
and other resources are frequently required for their training.

Various artificial neural networks are described in the
following U.S. Pat. Nos. 4,979,124; 5,479,575; 5,493,688;
5,566,273, 5,682,503; 5,870,729, 7,577,631; and 7,814,038.

SUMMARY

A neural network includes a plurality of inputs to the
neural network configured to receive training images. The
training images are either received by the plurality of inputs
as a training input value array or codified as the training
input value array during training of the neural network, i.e.,
after having been received by the plurality of inputs. The
neural network also includes a plurality of synapses. Each
synapse is connected to one of the plurality of inputs and
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includes a plurality of corrective weights. Each corrective
weight is defined by a weight value, and the corrective
weights of the plurality of synapses are organized in a
corrective weight array.

The neural network additionally includes a plurality of
neurons. Each neuron has at least one output and is con-
nected with at least one of the plurality of inputs via at least
one of the plurality of synapses. Each neuron is configured
to add up the weight values of the corrective weights
corresponding to each synapse connected to the respective
neuron, such that the plurality of neurons generate a neuron
sum array. The neural network also includes a controller
configured to receive desired images organized as a desired
output value array.

The controller is also configured to determine a deviation
of the neuron sum array from the desired output value array
and generate a deviation array. The controller is additionally
configured to modify the corrective weight array using the
determined deviation array. Adding up the modified correc-
tive weight values to determine the neuron sum array
reduces the deviation of the neuron sum array from the
desired output value array, i.e., compensates for errors
generated by the neuron network during training, and gen-
erates a trained corrective weight array to thereby facilitate
concurrent or parallel training of the neural network.

In a trained neural network, the plurality of inputs to the
neural network may be configured to receive input images.
Such input images may be either received as an input value
array or codified as the input value array during recognition
of the images by the neural network. Each synapse may
include a plurality of trained corrective weights of the
trained corrective weight array. Additionally, each neuron
may be configured to add up the weight values of the trained
corrective weights corresponding to each synapse connected
to the respective neuron, such that the plurality of neurons
generate a recognized images array, thereby providing rec-
ognition of such input images.

The neural network may also include a set of distributors.
In such an embodiment, the set of distributors may be
configured to codify each of the training images and input
images as the respective training input value array and input
value array. Such a set of distributors may be operatively
connected to the plurality of inputs for receiving the respec-
tive training images and input images.

The controller may additionally be programmed with an
array of target deviation of the neuron sum array from the
desired output value array. Furthermore, the controller may
be configured to complete training of the neural network
when the deviation of the neuron sum array from the desired
output value array is within an acceptable range of the array
of target deviation.

The training input value array, input value array, correc-
tive weight array, neuron sum array, desired output value
array, deviation array, trained corrective weight array, rec-
ognized image array, and target deviation array may be
organized, respectively, as a training input value matrix,
input value matrix, corrective weight matrix, neuron sum
matrix, desired output value matrix, deviation matrix,
trained corrective weight matrix, recognized image matrix,
and target deviation matrix.

The neural network may additionally include a plurality
of data processors. In such an embodiment, the controller
may be additionally configured to partition at least one of the
respective input value, training input value, corrective
weight, neuron sum, and desired output value matrices into
respective sub-matrices and communicate a plurality of the
resultant sub-matrices to the plurality of data processors for
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separate parallel mathematical operations therewith. Such
partitioning of any of the subject matrices into respective
sub-matrices facilitates concurrent or parallel data process-
ing and an increase in speed of either image recognition of
the input value matrix or training of the neural network.
Such concurrent or parallel data processing also permits
scalability of the neural network.

The controller may modify the corrective weight matrix
by applying an algebraic matrix operation to the training
input value matrix and the corrective weight matrix to
thereby train the neural network.

The mathematical matrix operation may include a deter-
mination of a mathematical product of the training input
value and corrective weight matrices to thereby form a
current training epoch weight matrix.

The controller may also be configured to subtract the
neuron sum matrix from the desired output value matrix to
generate a matrix of deviation of neuron sums. Additionally,
the controller may be configured to divide the matrix of
deviation of neuron sums by the number of inputs connected
to the respective neuron to generate a matrix of deviation per
neuron input.

The controller may be also configured to determine a
number of times each corrective weight was used during one
training epoch of the neural network. The controller may
additionally be configured to form an averaged deviation
matrix for the one training epoch using the determined
number of times each corrective weight was used during the
one training epoch. Furthermore, the controller may be
configured to add the averaged deviation matrix for the one
training epoch to the corrective weight matrix to thereby
generate the trained corrective weight matrix and complete
the one training epoch.

A method of operating such a neural network, i.e., for
training and image recognition, is also disclosed.

Additionally disclosed are a non-transitory computer-
readable storage device for operating an artificial neural
network and an apparatus for operating an artificial neural
network.

The above features and advantages, and other features and
advantages of the present disclosure, will be readily apparent
from the following detailed description of the
embodiment(s) and best mode(s) for carrying out the
described disclosure when taken in connection with the
accompanying drawings and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a “progressive neural network”
(p-net) having a plurality of synapses and a plurality of
corrective weights associated with each synapse, according
to the disclosure.

FIG. 2 is an illustration of the p-net in the process of being
trained, according to the disclosure.

FIG. 3 is an illustration of the p-net in the process of
image recognition, according to the disclosure.

FIG. 4 is a flow diagram of a method for operating the
neural network shown in FIGS. 2-3.

DETAILED DESCRIPTION

Referring to the drawings, wherein like reference num-
bers refer to like components, FIG. 1 shows a general
schematic view of a progressive artificial neural network
100, thereafter “the network™, or “p-net” 100. The p-net 100
may be implemented as software programmed into an appa-
ratus, such as a computer or a system of computers, or be
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configured as a combination of software and hardware
incorporated into a non-transitory computer-readable stor-
age device, or a hardware device such as a microchip.

The p-net 100 includes a plurality of inputs 102, and is a
means for executing the actions described in detail below.
Each input 102 is configured to receive an input signal 104,
wherein the input signals are represented as I, I, . .. I, in
FIGS. 1-3. Each input signal I;, L, . . . I, represents a value
of some characteristic(s) of an input image 106, for example,
a magnitude, frequency, phase, signal polarization angle, or
association with different parts of the input image 106. The
term “image” as employed herein is intended to denote any
type of information or data received for processing or
generated by the neural network. Each input signal 104 has
an input value, wherein together the plurality of input signals
104 generally describes the input image 106. A trained p-net
is designated via numeral 100A. When the p-net 100 is being
trained, the input image 106 is defined as a training image,
while in the trained p-net 100A the input image 106 is
intended to undergo recognition.

Each input value may be within a value range that lies
between —c and +co0 and may be set in digital and/or analog
forms. The range of the input values may depend on a set of
training images. In the simplest case, the range input values
could be the difference between the smallest and largest
values of input signals for all training images. For practical
reasons, the range of the input values may be limited by
eliminating input values that are deemed too high. For
example, such limiting of the range of the input values may
be accomplished via known statistical methods for variance
reduction, such as importance sampling. Another example of
limiting the range of the input values may be designation of
all signals that are lower than a predetermined minimum
level to a specific minimum value and designation of all
signals exceeding a predetermined maximum level to a
specific maximum value. The training images 106 are either
received by the plurality of inputs 102 as a training input
value array 107 or codified as a training input value array
107 during training of the p-net 100, i.e., after having been
received by the plurality of inputs.

The p-net 100 also includes a plurality or a set of synapses
118. Each synapse 118 is connected to one of the plurality
of inputs 102, includes a plurality of corrective weights 112,
and may also include a synaptic weight 108, as shown in
FIGS. 1-3. Each corrective weight 112 is defined by a
respective weight value. Additionally, the corrective weights
112 of all the synapses 118 are organized as, i.e., in the form
of, a corrective weight array 119. Accordingly, in FIG. 1, the
corrective weight array 119 includes all the corrective
weights 112 within the dashed box 119. The p-net 100 may
also include a set of distributors 114. In such an embodi-
ment, each distributor 114 is operatively connected to one of
the plurality of inputs 102 for receiving the respective input
signal 104.

The p-net 100 additionally includes a set of neurons 116,
and is a means for executing the actions described in detail
below. Each neuron 116 has at least one output 117 and is
connected with at least one of the plurality of inputs 102 via
one synapse 118. Each neuron 116 is configured to add up
or sum the corrective weight values of the corrective weights
112 selected from each synapse 118 connected to the respec-
tive neuron 116 and thereby generate and output a neuron
sum array 120, otherwise designated as 2n. A separate
distributor 114 may be used for each synapse 118 of a given
input 102, as shown in FIGS. 1-3. Alternatively, a single
distributor may be used for all such synapses (not shown).
During formation or setup of the p-net 100, all corrective
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weights 112 are assigned initial values, which may change
during the process of p-net training, shown in FIG. 2. The
initial value of the corrective weight 112 may be selected
randomly, calculated with the help of a pre-determined
mathematical function, selected from a predetermined tem-
plate, etc. Initial values of the corrective weights 112 may be
either identical or distinct for each corrective weight 112,
and may also be zero.

As shown in FIG. 2, the p-net 100 also includes a
controller 122 configured to regulate training of the p-net
100, and as such is a means for executing the actions
described in detail below. In order to appropriately perform
the tasks described in detail below, the controller 122
includes a memory, at least some of which is tangible and
non-transitory. The memory of the controller 122 may be a
recordable medium that participates in providing computer-
readable data or process instructions. Such a medium may
take many forms, including but not limited to non-volatile
media and volatile media. Non-volatile media for the con-
troller 122 may include, for example, optical or magnetic
disks and other persistent memory. Volatile media may
include, for example, dynamic random access memory
(DRAM), which may constitute a main memory. Such
instructions may be transmitted by one or more transmission
medium, including coaxial cables, copper wire and fiber
optics, including the wires that comprise a system bus
coupled to a processor of a computer.

Memory of the controller 122 may also include an appro-
priate medium, for example a magnetic or an optical
medium. The controller 122 may be configured or equipped
with other required computer hardware, such as a high-speed
clock, requisite Analog-to-Digital (A/D) and/or Digital-to-
Analog (D/A) circuitry, necessary input/output circuitry and
devices (I/O), as well as appropriate signal conditioning
and/or buffer circuitry. Algorithms required by the controller
122 or accessible thereby may be stored in the memory and
automatically executed to provide the required functionality
described in detail below.

The controller 122 may be programmed to organize the
corrective weights 112 into the corrective weight array 119.
The controller 122 is also configured to receive desired
images 124 organized as a desired output value array 126,
determine a deviation 128 of the neuron sum array 120 from
the desired output value array, and generate a deviation array
132. The controller 122 is further configured to modify the
corrective weight array 119 using the determined deviation
array 132. In such a case, adding up the modified corrective
weight values to determine the neuron sum array 120
reduces, i.e., minimizes, the deviation 128 of the neuron sum
array 120 from the desired output value array 126 to
generate a trained corrective weight array 134. As shown in
FIGS. 2-3, and analogous to the corrective weight array 119
shown in FIG. 1, the trained corrective weight array 134
includes all the corrective weights 112 within the dashed box
134. As shown in FIGS. 2-3, and analogous to FIG. 1, the
corrective weight array 119 includes all the corrective
weights 112 within the dashed box 119 and may include the
distributors 114 associated therewith. Therefore, the mini-
mized deviation 128 of the neuron sum array 120 compen-
sates for errors generated by the p-net 100. Furthermore, the
generated trained corrective weight array 134 facilitates
concurrent or parallel training of the p-net 100.

In a trained p-net 100A, shown in FIG. 3, the plurality of
inputs 102 to the p-net may be configured to receive input
images 106. Such input images 106 may be either received
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as an input value array 107A or codified as an input value
array 107A during recognition of the images by the p-net
100. Each synapse 118 may include a plurality of trained
corrective weights 112A. Additionally, each neuron 116 may
be configured to add up the weight values of the trained
corrective weights 112A corresponding to each synapse 118
connected to the respective neuron, such that the plurality of
neurons generate a recognized images array 136, thereby
providing recognition of the input images 106. In the
embodiment of the p-net 100 and the trained p-net 100A that
includes the set of distributors 114, the distributors may be
configured to codify the training and input images 106 as the
respective training input value array 107 and input value
array 107A. Accordingly, such a set of distributors 114 being
operatively connected to the plurality of inputs 102 for
receiving each of the respective training and input images
106. The above operations may be performed using struc-
tured matrices, specifically a trained corrective weight
matrix in place of the trained corrective weight array 134, as
will be described in detail below.

The controller 122 may additionally be programmed with
an array of target deviation or target deviation array 138 of
the neuron sum array 120 from the desired output value
array 126. Furthermore, the controller 122 may be config-
ured to complete training of the p-net 100 when the devia-
tion 128 of the neuron sum array 120 from the desired output
value array 126 is within an acceptable range 139 of the
target deviation array 138. The acceptable range 139 may be
referenced against a maximum or a minimum value in, or an
average value of the target deviation array 138. Alterna-
tively, the controller 122 may be configured to complete
training of the p-net 100 when the speed of reduction of the
deviation 128 or convergence of the training input value
array 107 and the desired output value array 126 falls to a
predetermined speed value 140. The acceptable range 139
and/or the predetermined speed value 140 may be pro-
grammed into the controller 122.

The training input value array 107, input value array
107A, the corrective weight array 119, neuron sum array
120, desired output value array 126, deviation array 132,
trained corrective weight array 134, recognized images array
136, and target deviation array 138, i.e., parameter values
therein, may be organized, respectively, as a training input
value matrix 141, input value matrix 141A, corrective
weight matrix 142, neuron sum matrix 143, desired output
value matrix 144, deviation matrix 145, trained corrective
weight matrix 146, recognized images matrix 147, and target
deviation matrix 148. Wherein in each respective array 107,
107A, 119, 120, 126, 132, 134, 136, and 138, values of the
respective parameters may be organized, for example, in the
form of a processor accessible data table, the values in the
respective matrices 141, 141A, 142, 143, 144,145,146, 147,
and 148 are specifically organized to enable application of
algebraic matrix operations to each respective matrix indi-
vidually, as well as to combinations thereof. The matrices
141, 141A, 142, 143, 144, 145, 146, 147, and 148 are not
specifically shown in the figures, but, when organized as
such, are to be understood as taking place of the respective
arrays 107, 107A, 119, 120, 126, 132, 134, 136, and 138.

In the examples below, for illustration purposes, particular
matrices are depicted with arbitrary number of columns and
rows. For example, the training images may be received
and/or organized in an input training matrix |1I:



US 10,423,694 B2

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3
Image 1 Iy I, I3,
Image 2 I Ls Is Image 1 0, 0y, 0,3
Image 3 Iis o I33 5
Image 2 0, O, Os3
.. . . . Image 3 @) (@) (@]
Subsequently, the above training input images matrix may o 2 2
be converted via the controller 122 into the training input
value matrix 141, which is represented as matrix IC|. Each - .
: o pres 10 The deviation 128 of the neuron sum matrix 143 may be
matrix |C| will have a corresponding number of columns for ] . :
the number of inputs “I”, but accounting for a specific determined from the desired output value matrix 144 to
number of intervals “i”’ and a Corresponding number of rows generate the deviation matrix 148 represented as matrix |E|
for the number of images. below:
Input 1 Input 2 Input 3
il i2 i3 i4 il i2 i3 i4 il i2 i3 i4
Imagel C;;; Cpp Ciar Cun G G Cor Goyr Gonn Gagp GCaay Gauy
Image2 Cip Cip Cizx Cin Gio G Conn Conn Gip Gam Gz Gapp
Image3 Ci3 Ciz Ciaz Cus Gz Coos Cosz Coszs Caiz Caoz Cazs Caas
In matrix |CI, intervals “i” identified with a specific correc-
tive weight 112 that will be used during training. In columns 25 T Zp I
corresponding to intervals “i”, the values of signals may be IE| = 10| =2 = %1 Za a3
replaced with ones (1) to signify that the particular signal i Iz I
will be used in the particular interval, while in other intervals
for the subject signal, the values of signals may be replaced .
with zeros (0) to signify that the particular interval will not 3° herein,
be considered. 2,702y,
An exemplary corrective weight matrix 146 may be formed _
. . 2,,=0,-%5,
as matrix |W| shown below:
35 Z,=0,-2) etc.
Intervals Output 1 Output 2 Output 3 The corrective Welght. matrix .142, representeq as matrix IWI
below, may be modified using the determined deviation
Tnput 1 i Wi Wi Wi matrix 145, which permits ad.dlng up the modified corrective
o - - - weight 112 values to determine the neuron sum matrix 143
121 122 123 .« . . o e .
3 W W W 40 to minimize the deviation of the neuron sum matrix 143
L 131 132 133 . .
“ - - - from the desired output value matrix 144 to generate a
141 142 143 . . . . .
: trained corrective weight matrix 146, represented as matrix
Input 2 il Wau Wain Wais . . . .
0 W, W W |Wtraine.d|' The matrix 1W,,,,..l is derjlved according to
. expression |W,,,,../I=IWI+IVWI| (wherein the factor IVWI
i3 Wost Waso Wass 45 il be d .bt”:i"f? detail bel
. will be described in detail below):
i4 Woay Was Waus )
Input 3 il Wiy Wi Wiz
i2 w321 w322 w323
. Intervals Output 1 Output 2 Output 3
i3 Wiz Wiz Wias » » i
i4 Wt Wi Wias 50 Input 1 %1 Win+ VWi Wi+ VWi Wis+ VW53
}2 Wit + VWin Wi+ VWi Wing + VW,
i3 Wizt + VWis Wi+ VW5 Wi+ VW5,
. . i4 Wi+ VWi Wi+ VWi, Wi+ VW,
The neuron sum matrix 143 may be represented as matrix || Tnput 2 i Wory + VWoi, Wops + VWors Wors + VWoys
shown below: i2 Wooi + VWos Woop + VWasp Wong + VW5
55 %3 Wosi + VWoz1 Wozo + VWa3o Wosz + VW3,
}4 Woar + VWou1 Wopp + VWop Woys + VW,
Input 3 il Wi+ VW3, Wi+ VW35 Wi+ VW53
Zl=1Cx|W| = i2 Wiy + VWiayp Wi+ VWan Wiaps + VW55
%3 Wizt + VWias Wiz + VWia Wiss + VWi,
Zi1 = Cra X Wit + Crop X Wiz + Cian X Wisp . i4 Waar + VWay Wi + VWi Wiy + VWi,
Zu Ziz Iz 21 = Cory X Wain + Cooy X Wapy + Cost XWast o g
Ty Zpp Zpz == Ly = G X Wann + Camn X Wiy + C3 X Wy e As discussed above, the formation of the trained corrective
3 Xz sz Zi2 = Cup XWipp + Ciop X Winp + Crso X Wiz . weight array 134 and the trained corrective weight matrix
Toy = Coun X Wapp + Cozy X Wapy + Cozp X Wasy ... 146 facilitates concurrent training of the p-net 100.
In the embodiment of image recognition (shown in FIG.
65 3) using the trained p-net 100A, concurrent recognition of a

The desired output value matrix 144 may be formed as
matrix 10I, as shown below:

batch of input images 106 may be provided using matrix
operation described above. Specifically, the trained p-net
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100A the corrective weights array, which may be repre-
sented as a two-dimensional nxk matrix |WI, where “n” is
the number of neurons 116 and “k” is the number of
corrective weights 112 in a particular neuron. The matrix

IW| may be generally represented as follows:

Wi Wi Wis Wik
Wy, Wi, W3 W
Wiy Wi Wi Wiy
W Wao Wz Wi
W W, W, W

For concurrent recognition of a batch of input images 106,
the input images to be recognized may be presented as a vxk
matrix |Irl, where “v” is the number of recognizable images,
“k” is the number of corrective weights 112 in a particular
neuron 116. The matrix |Irl of input images 106 for recog-
nition may be generally represented as follows:

Iy Iy, Ir3; Ir,;
Irpp Iy, Irs, Ir»
Irj3 Iry3 Irz3 Ir,
Iry Irpy Irzy Irpg
Irye Iro Irs, Iry

In the above matrix |Irl, each row of the matrix is a single
image subjected to recognition.

Concurrent recognition of a batch of input images 106
may be provided by multiplication of the matrix IW| by a
transposed matrix |11, to generate the recognized image
matrix 147, represented by a symbol “IY|”, and represented
as follows:

IY1=1WIx1Ir T

The matrix 1Yl has dimensions nxv. Each column of the
matrix |Y! is a single output or recognized image obtained
by the trained p-net 100A. The matrix Y| may be generally
depicted as follows:

Y Yo Y3 Yy,
Yo, Y Va3 Y,
Y3, Y Yi3 Y,
Yau Y Ya3 Ya,
Y1 Y. Y3 Y.

Each of the p-net 100 and 100A may additionally include
a data processor 150, which may be a sub-unit of the
controller 122. In such embodiments, the controller 122 may
be additionally configured to partition or cut-up at least one
of'the respective training input value matrix 141, input value
matrix 141A, corrective weight matrix 142, neuron sum
matrix 143, and desired output value matrix 144 into respec-
tive sub-matrices. The controller 122 may also be configured
to communicate a plurality of the resultant sub-matrix or
sub-matrices to the data processor 150 for separate math-
ematical operations therewith. Such partitioning of any of
the subject matrices 141, 142, 143, and 144 into respective
sub-matrices facilitates concurrent or parallel data process-
ing and an increase in speed of either image recognition of
the input value matrix 141A or training of the p-net 100.
Such concurrent or parallel data processing also permits
scalability of the p-net 100 or 100A, i.e., provides ability to
vary the size of the p-net by limiting the size of the
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respective matrices being subjected to algebraic manipula-
tions on a particular processor and/or breaking up the
matrices between multiple processors, such as the illustrated
processor 150. As shown in FIGS. 1-3, in such an embodi-
ment of the p-net 100 and 100A, multiple data processors
150 in communication with the controller 122 may be
employed, whether as part of the controller 122 or arranged
distally therefrom, and configured to operate separately and
in parallel.

The controller 122 may modify the corrective weight
matrix 142 by applying an algebraic matrix operation to the
training input value matrix 141A and the corrective weight
matrix to thereby train the p-net 100. Such a mathematical
matrix operation may include a determination of a math-
ematical product of the input value matrix 141A and the
corrective weight matrix 146 to thereby form a current
training epoch weight matrix 151. The controller 122 may
also be configured to subtract the neuron sum matrix 143
from the desired output value matrix 144 to generate a
matrix of deviation of neuron sums 153 depicted as matrix
IE| described above. Additionally, the controller 122 may be
configured to divide the matrix of deviation of neuron sums
153 by the number of synapses 118, identified below with a
letter “m”, connected to the respective neuron 116 to gen-
erate a matrix of deviation per neuron input 155, represented
below by the symbol “IAWI”, as follows:

IAW=IEl/m

The controller 122 may be additionally configured to
determine a number of times each corrective weight 112 was
used during one training epoch of the p-net 100 represented
in the expression below by the symbol “ISI”. As shown
below, the matrix IS| is obtained via multiplication of the
training input value matrix 141A by a unit vector:

cll c12 c13 1
IS|= €21 €22 23 x 1
3l R 331

The controller 122 may be further configured to form an
averaged deviation matrix 157, represented below by the
symbol “IVWI”, for the one training epoch using the deter-
mined number of times each corrective weight was used
during the one training epoch.

IVIN=IAW/S|

Furthermore, the controller 122 may be configured to add
the averaged deviation matrix 157 for the one training epoch
to the corrective weight matrix 142 to thereby generate the
trained corrective weight matrix 146, represented below as

IW,,ineqls @and complete the one training epoch as shown
below:
Wy ginea =1 WI+IVIF)
Intervals Output 1 Output 2 Output 3

Input 1 il Win+VWi Wimp+VW, Wi+ VW,
%2 Wi+ VWi Wi+ VWi Wins + VW H3
}3 Wiai+ VWi Wi+ VW5 Wias + VW ia,
}4 Wi+ VWi Wi+ VWi Wi+ VW5

Input 2 }1 Woir+ VWoy Wop+ VWo 0 Wois+ VW5,
}2 Wy + VWanp Wop + VWon Wiz + VWi3
}3 W+ VWazr Wogp + VW3 Wiz + VW35
i4 Woar + VWayr Wopp + VW Wiy + VWyy3
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-continued
Intervals Output 1 Output 2 Output 3
Input 3 %1 Wi+ VWay Wi + VW3 Wi+ VW55
}2 Wy + VWiayp Wi+ VW5 Wips + VW55
}3 Wiz + VWiazp Wigp + VW3 Wiz + VW35
i4 Wagy + VWayr Wi+ VWi Wiz + VW55

FIG. 4 depicts a method 200 for operating the p-net 100,
as described above with respect to FIGS. 1-3. The method
200 is configured to improve operation of an apparatus, such
as a computer, or a system of computers employed in
implementing supervised training using one or more data
processors, such as the processor 150. The method 200 may
be programmed into a non-transitory computer-readable
storage device for operating the p-net 100 and encoded with
instructions executable to perform the method.

The method 200 commences in frame 202 where the
method includes receiving, via the plurality of inputs 102,
the training images 106. As described above with respect to
structure of the p-net 100 depicted in FIG. 1, the training
images 106 may either be received as the training input
value array 107 prior to commencement of the subject
training phase or codified as the training input value array
during the actual training phase. Following frame 202, the
method advances to frame 204. In frame 204, the method
includes organizing the corrective weights 112 of the plu-
rality of synapses 118 in the corrective weight array 119. As
described above with respect to the structure of the p-net
100, each synapse 118 is connected to one of the plurality of
inputs 102 and includes a plurality of corrective weights 112.

After frame 204, the method proceeds to frame 206, in
which the method includes generating the neuron sum array
120 via the plurality of neurons 116. As described above
with respect to the structure of the p-net 100, each neuron
116 has at least one output 117 and is connected with at least
one of the plurality of inputs 102 via one of the plurality of
synapses 118. Furthermore, each neuron 116 is configured to
add up the weight values of the corrective weights 112
corresponding to each synapse 118 connected to the respec-
tive neuron. Following frame 206, in frame 208, the method
includes receiving, via the controller 122, desired images
124 organized as the desired output value array 126. After
frame 208, the method proceeds to frame 210, in which the
method includes determining, via the controller 122, the
deviation 128 of the neuron sum array 120 from the desired
output value array 126 and thereby generate the deviation
array 132.

Following frame 210, the method advances to frame 212.
In frame 212, the method includes modifying, via the
controller 122, the corrective weight array 119 using the
determined deviation array 132. The modified corrective
weight values of the modified corrective weight array 119
may subsequently be added or summed up and then used to
determine a new neuron sum array 120. The summed
modified corrective weight values of the modified corrective
weight array 119 may then serve to reduce or minimize the
deviation of the neuron sum array 120 from the desired
output value array 126 and generate the trained corrective
weight array 134. The deviation array 132 may be deter-
mined as sufficiently minimized when the deviation 128 of
the neuron sum array 120 from the desired output value
array 126 is within an acceptable range 139 of the array of
target deviation 138, as described above with respect to the
structure of the p-net 100A. The trained corrective weight
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array 134 includes the trained corrective weights 112A
determined using the deviation array 132 and thereby trains
the p-net 100.

As described above with respect to the structure of the
p-net 100, each of the training input value array 107, the
corrective weight array 119, neuron sum array 120, desired
output value array 126, deviation array 132, trained correc-
tive weight array 134, and target deviation array 138 may be
organized, respectively, as the training input value matrix
141, corrective weight matrix 142, neuron sum matrix 143,
desired output value matrix 144, deviation matrix 145,
trained corrective weight matrix 146, and target deviation
matrix 148. In frame 212, the method may further include
partitioning, via the controller 122, at least one of the
respective training input value matrix 141, input value
matrix 141A, corrective weight matrix 142, neuron sum
matrix 143, and desired output value matrices 144 into
respective sub-matrices. Such resultant sub-matrices may be
communicated to the data processor 150 for separate math-
ematical operations therewith to thereby facilitate concur-
rent data processing and an increase in speed of training of
the p-net 100.

In frame 212 the method may also include modifying, via
the controller 122, the corrective weight matrix 142 by
applying an algebraic matrix operation to the training input
value matrix 141 and the corrective weight matrix to thereby
train the p-net 100. Such a mathematical matrix operation
may include determining a mathematical product of the
training input value matrix 141 and corrective weight matrix
142 to thereby form the current training epoch weight matrix
151. In frame 212 the method may additionally include
subtracting, via the controller 122, the neuron sum matrix
143 from the desired output value matrix 144 to generate the
matrix of deviation of neuron sums 153. Also, in frame 212
the method may include dividing, via the controller 122, the
matrix of deviation of neuron sums 153 by the number of
inputs connected to the respective neuron 116 to generate the
matrix of deviation per neuron input 155.

Furthermore, in frame 212 the method may include deter-
mining, via the controller 122, the number of times each
corrective weight 112 was used during one training epoch of
the p-net 100. And, the method may, moreover, include
forming, via the controller 122, the averaged deviation
matrix 157 for the one training epoch using the determined
number of times each corrective weight 112 was used during
the particular training epoch. For example, such an operation
may include dividing, element-by-element, the matrix of
deviation per neuron input by the determined number of
times each corrective weight was used during the particular
training epoch to obtain averaged deviation for each correc-
tive weight 112 used during the one training epoch, thereby
forming the averaged deviation matrix 157 for the one
training epoch.

Additionally, other matrix-based operations may be
employed in frame 212, to form an averaged deviation
matrix 157 for the one training epoch using, for example,
arithmetic mean, geometric mean, harmonic mean, root
mean square, etc. Also, in frame 212 the method may
include adding, via the controller 122, the averaged devia-
tion matrix 157 for the one training epoch to the corrective
weight matrix 142 to thereby generate the trained corrective
weight matrix 146 and complete the particular training
epoch. Accordingly, by permitting matrix operations to be
applied to all the corrective weights 112 in parallel, the
method 200 facilitates concurrent, and therefore enhanced
speed, training of the p-net 100 in generating the trained
p-net 100A.
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Following frame 212, method 200 may include returning
to frame 202 to perform additional training epochs until the
deviation array 132 is sufficiently minimized. In other
words, additional training epochs may be performed to
converge the neuron sum array 120 on the desired output
value array 126 to within the predetermined deviation or
error value, such that the p-net 100 may be considered
trained and ready for operation with new input images 106.
Accordingly, after frame 212, the method may proceed to
frame 214 for image recognition using the trained p-net
100A (shown in FIG. 3).

In the embodiment of image recognition using the trained
p-net 100A, in frame 214, the method 200 includes receiving
the input images 106 via the plurality of inputs 102. As
described above with respect to the structure of the p-net
100A, the input images 106 may be either received as the
input value array 107A or codified as the input value array
during recognition of the images by the p-net 100A. Fol-
lowing frame 214, in frame 216, the method includes
attributing to each synapse 118 a plurality of trained cor-
rective weights 112A of the trained corrective weight array
134. After frame 216, the method advances to frame 218.

In frame 218, the method includes adding up the weight
values of the trained corrective weights 112A corresponding
to each synapse 118 connected to the respective neuron 116.
As described above with respect to the structure of the p-net
100, such summing of the weight values of the trained
corrective weights 112A enables the plurality of neurons 116
to generate a recognized images array 136, thereby provid-
ing recognition of the input images 106. As described above
with respect to the structure of the p-net 100A, in addition
to the matrices 141, 142, 143, 144, 145, 146, and 148 used
for training, the input value array 107A and the recognized
images array 136 may be organized, respectively, as the
input value matrix 141 A and the recognized images matrix
147.

In frame 218, the method may also include partitioning,
via the controller 122, any of the employed matrices, such as
the input value matrix 141A, into respective sub-matrices.
Such resultant sub-matrices may be communicated to the
data processor 150 for separate mathematical operations
therewith to thereby facilitate concurrent data processing
and an increase in speed of image recognition of the p-net
100A. Analogous to the effect matrix operations impart to
the training portion of the method 200 in frames 202-212,
the image recognition portion in frames 214-218 benefits
from enhanced speed, when algebraic matrix operations are
applied in parallel to the matrices or sub-matrices of the
trained p-net 100A. Accordingly, by permitting matrix
operations to be applied to all the trained corrective weights
112A in parallel, the method 200 facilitates concurrent, and
therefore enhanced speed, image recognition using the p-net
100A. Following frame 218 the method may return to frame
202 for additional training, as described with respect to FIG.
2, if the achieved image recognition is deemed insufficiently
precise, or the method may conclude in frame 220.

The detailed description and the drawings or figures are
supportive and descriptive of the disclosure, but the scope of
the disclosure is defined solely by the claims. While some of
the best modes and other embodiments for carrying out the
claimed disclosure have been described in detail, various
alternative designs and embodiments exist for practicing the
disclosure defined in the appended claims. Furthermore, the
embodiments shown in the drawings or the characteristics of
various embodiments mentioned in the present description
are not necessarily to be understood as embodiments inde-
pendent of each other. Rather, it is possible that each of the

20

25

30

40

45

50

14

characteristics described in one of the examples of an
embodiment may be combined with one or a plurality of
other desired characteristics from other embodiments,
resulting in other embodiments not described in words or by
reference to the drawings. Accordingly, such other embodi-
ments fall within the framework of the scope of the
appended claims.
What is claimed is:
1. A neural network comprising:
a plurality of inputs to the neural network configured to
receive training images, wherein the training images
are one of received as a training input value array and
codified as the training input value array during training
of the neural network;
a plurality of synapses, wherein each synapse is con-
nected to one of the plurality of inputs and includes a
plurality of corrective weights, wherein each corrective
weight is defined by a weight value, and wherein the
corrective weights of the plurality of synapses are
organized in a corrective weight array;
a plurality of neurons, wherein each neuron has at least
one output and is connected with at least one of the
plurality of inputs via at least one of the plurality of
synapses, and wherein each neuron is configured to add
up the weight values of the corrective weights corre-
sponding to each synapse connected to the respective
neuron, such that the plurality of neurons generate a
neuron sum array; and
a controller configured to:
receive desired images organized as a desired output
value array;

determine a deviation of the neuron sum array from the
desired output value array and generate a deviation
array; and

modify the corrective weight array using the deter-
mined deviation array, such that adding up the modi-
fied corrective weight values to determine the neuron
sum array reduces the deviation of the neuron sum
array from the desired output value array to generate
a trained corrective weight array and thereby facili-
tate concurrent training of the neural network.

2. The neural network of claim 1, wherein in a trained
neural network:

the plurality of inputs to the neural network are configured
to receive input images, wherein the input images are
one of received as an input value array and codified as
the input value array during recognition of the images
by the neural network;

each synapse includes a plurality of trained corrective
weights of the trained corrective weight array; and

each neuron is configured to add up the weight values of
the trained corrective weights corresponding to each
synapse connected to the respective neuron, such that
the plurality of neurons generate a recognized images
array, thereby providing recognition of the input
images.

3. The neural network of claim 2, further comprising a set
of distributors, wherein the set of distributors is configured
to codify each of the training images and input images as the
respective training input value array and input value array,
and wherein the set of distributors is operatively connected
to the plurality of inputs for receiving the respective training
images and input images.

4. The neural network of claim 1, wherein the controller
is additionally programmed with an array of target deviation
of the neuron sum array from the desired output value array,
and wherein the controller is additionally configured to
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complete training of the neural network when the deviation
of the neuron sum array from the desired output value array
is within an acceptable range of the array of target deviation.

5. The neural network of claim 2, wherein the training
input value array, input value array, corrective weight array,
neuron sum array, desired output value array, deviation
array, trained corrective weight array, recognized image
array, and target deviation array is organized, respectively, as
a training input value matrix, input value matrix, corrective
weight matrix, neuron sum matrix, desired output value
matrix, deviation matrix, trained corrective weight matrix,
recognized image matrix, and target deviation matrix.

6. The neural network of claim 5, further comprising a
plurality of data processors, wherein the controller is addi-
tionally configured to partition at least one of the respective
input value, training input value, corrective weight, neuron
sum, and desired output value matrices into respective
sub-matrices and communicate a plurality of the resultant
sub-matrices to the plurality of data processors for separate
parallel mathematical operations therewith to thereby facili-
tate concurrent data processing and an increase in speed of
one of image recognition of the input value matrix and
training of the neural network.

7. The neural network of claim 5, wherein the controller
modifies the corrective weight matrix by applying an alge-
braic matrix operation to the training input value matrix and
the corrective weight matrix to thereby train the neural
network.

8. The neural network of claim 7, wherein the mathemati-
cal matrix operation includes a determination of a math-
ematical product of the training input value and corrective
weight matrices to thereby form a current training epoch
weight matrix.

9. The neural network of claim 8, wherein the controller
is additionally configured to:

subtract the neuron sum matrix from the desired output

value matrix to generate a matrix of deviation of neuron
sums; and

divide the matrix of deviation of neuron sums by the

number of inputs connected to the respective neuron to
generate a matrix of deviation per neuron input.
10. The neural network of claim 9, wherein the controller
is additionally configured to:
determine a number of times each corrective weight was
used during one training epoch of the neural network;

form an averaged deviation matrix for the one training
epoch using the determined number of times each
corrective weight was used during the one training
epoch; and

add the averaged deviation matrix for the one training

epoch to the corrective weight matrix to thereby gen-
erate the trained corrective weight matrix and complete
the one training epoch.

11. A method of operating a neural network, comprising:

receiving training images via a plurality of inputs to the

neural network, wherein the training images are one of
received as a training input value array and codified as
the training input value array during training of the
neural network;

organizing corrective weights of a plurality of synapses in

a corrective weight array, wherein each synapse is
connected to one of the plurality of inputs and includes
a plurality of corrective weights, and wherein each
corrective weight is defined by a weight value;
generating a neuron sum array via a plurality of neurons,
wherein each neuron has at least one output and is
connected with at least one of the plurality of inputs via
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one of the plurality of synapses, and wherein each
neuron is configured to add up the weight values of the
corrective weights corresponding to each synapse con-
nected to the respective neuron;

receiving, via a controller, desired images organized as a

desired output value array;

determining, via the controller, a deviation of the neuron

sum array from the desired output value array and
generate a deviation array; and

modifying, via the controller, the corrective weight array

using the determined deviation array, such that adding
up the modified corrective weight values to determine
the neuron sum array reduces the deviation of the
neuron sum array from the desired output value array to
generate a trained corrective weight array and thereby
facilitate concurrent training of the neural network.

12. The method of claim 11, wherein in a trained neural
network:

receiving input images via the plurality of inputs to the

neural network, wherein the input images are one of
received as an input value array and codified as the
input value array during recognition of the images by
the neural network;

attributing to each synapse a plurality of trained corrective

weights of the trained corrective weight array, wherein
each trained corrective weight is defined by a weight
value; and

adding up the weight values of the trained corrective

weights corresponding to each synapse connected to
the respective neuron, such that the plurality of neurons
generate a recognized images array, thereby providing
recognition of the input images.

13. The method of claim 12, further comprising codifying,
via a set of distributors, each of the training images and input
images as the respective training input value array and input
value array, wherein the set of distributors is operatively
connected to the plurality of inputs for receiving the respec-
tive training images and input images.

14. The method of claim 11, wherein the controller is
additionally programmed with an array of target deviation of
the neuron sum array from the desired output value array, the
method further comprising, completing, via the controller,
training of the neural network when the deviation of the
neuron sum array from the desired output value array is
within an acceptable range of the array of target deviation.

15. The method of claim 12, further comprising organiz-
ing the training input value array, input value array, correc-
tive weight array, neuron sum array, desired output value
array, deviation array, trained corrective weight array, rec-
ognized image array, and target deviation array, respectively,
as a training input value matrix, input value matrix, correc-
tive weight matrix, neuron sum matrix, desired output value
matrix, deviation matrix, trained corrective weight matrix,
recognized image matrix, and target deviation matrix.

16. The method of claim 15, wherein the neural network
additionally includes a plurality of data processors, the
method further comprising partitioning, via the controller, at
least one of the respective input value, training input value,
corrective weight, neuron sum, and desired output value
matrices into respective sub-matrices and communicating a
plurality of the resultant sub-matrices to the plurality of data
processors for separate parallel mathematical operations
therewith to thereby facilitate concurrent data processing
and an increase in speed of one of image recognition of the
input value matrix and training of the neural network.

17. The method of claim 15, further comprising modify-
ing, via the controller, the corrective weight matrix by
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applying an algebraic matrix operation to the training input
value matrix and the corrective weight matrix to thereby
train the neural network.

18. The method of claim 17, wherein applying the math-
ematical matrix operation includes determining a math-
ematical product of the training input value and corrective
weight matrices to thereby form a current training epoch
weight matrix.

19. The method of claim 18, further comprising:

subtracting, via the controller, the neuron sum matrix

from the desired output value matrix to generate a
matrix of deviation of neuron sums; and

dividing, via the controller, the matrix of deviation of

neuron sums by the number of inputs connected to the
respective neuron to generate a matrix of deviation per
neuron input.

20. The method of claim 19, further comprising:

determining, via the controller, a number of times each

corrective weight was used during one training epoch
of the neural network;

forming, via the controller, an averaged deviation matrix

for the one training epoch using the determined number
of times each corrective weight was used during the
one training epoch; and

adding, via the controller, the averaged deviation matrix

for the one training epoch to the corrective weight
matrix to thereby generate the trained corrective weight
matrix and complete the one training epoch.
21. A non-transitory computer-readable storage device for
operating an artificial neural network, the storage device
encoded with instructions executable to:
receive training images via a plurality of inputs to the
neural network, wherein the training images are one of
received as a training input value array and codified as
the training input value array during training of the
neural network;
organize corrective weights of a plurality of synapses in
a corrective weight array, wherein each synapse is
connected to one of the plurality of inputs and includes
a plurality of corrective weights, and wherein each
corrective weight is defined by a weight value;

generate a neuron sum array via a plurality of neurons,
wherein each neuron has at least one output and is
connected with at least one of the plurality of inputs via
one of the plurality of synapses, and wherein each
neuron is configured to add up the weight values of the
corrective weights corresponding to each synapse con-
nected to the respective neuron;

receive desired images organized as a desired output

value array;

determine a deviation of the neuron sum array from the

desired output value array and generate a deviation
array; and

modify the corrective weight array using the determined

deviation array, such that adding up the modified cor-
rective weight values to determine the neuron sum
array reduces the deviation of the neuron sum array
from the desired output value array to generate a
trained corrective weight array and thereby facilitate
concurrent training of the neural network.

22. The storage device of claim 21, further encoded with
instructions executable to:
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receive input images via the plurality of inputs to the
neural network, wherein the input images are one of
received as an input value array and codified as the
input value array during recognition of the images by
the neural network;

attribute to each synapse a plurality of trained corrective
weights of the trained corrective weight array, wherein
each trained corrective weight is defined by a weight
value; and

add up the weight values of the trained corrective weights
corresponding to each synapse connected to the respec-
tive neuron, such that the plurality of neurons generate
a recognized images array, thereby providing recogni-
tion of the input images.

23. An apparatus for operating an artificial neural net-

work, comprising:

a means for receiving training images via a plurality of
inputs to the neural network, wherein the training
images are one of received as a training input value
array and codified as the training input value array
during training of the neural network;

a means for organizing corrective weights of a plurality of
synapses in a corrective weight array, wherein each
synapse is connected to one of the plurality of inputs
and includes a plurality of corrective weights, and
wherein each corrective weight is defined by a weight
value;

a means for generating a neuron sum array via a plurality
of neurons, wherein each neuron has at least one output
and is connected with at least one of the plurality of
inputs via one of the plurality of synapses, and wherein
each neuron is configured to add up the weight values
of the corrective weights corresponding to each syn-
apse connected to the respective neuron;

a means for receiving desired images organized as a
desired output value array;

a means for determining a deviation of the neuron sum
array from the desired output value array and generate
a deviation array; and

a means for modifying the corrective weight array using
the determined deviation array, such that adding up the
modified corrective weight values to determine the
neuron sum array reduces the deviation of the neuron
sum array from the desired output value array to
generate a trained corrective weight array and thereby
facilitate concurrent training of the neural network.

24. The apparatus of claim 23, wherein in a trained neural

network:

a means for receiving input images via the plurality of
inputs to the neural network, wherein the input images
are one of received as an input value array and codified
as the input value array during recognition of the
images by the neural network;

a means for attributing to each synapse a plurality of
trained corrective weights of the trained corrective
weight array, wherein each trained corrective weight is
defined by a weight value; and

a means for adding up the weight values of the trained
corrective weights corresponding to each synapse con-
nected to the respective neuron, such that the plurality
of neurons generate a recognized images array, thereby
providing recognition of the input images.
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